Denny L Cottle

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/22833/publications.pdf

Version: 2024-02-01

26 papers 1,045 citations

16 h-index 25 g-index

26 all docs

26 docs citations

26 times ranked 1823 citing authors

#	Article	IF	CITATIONS
1	Proteomic identification of FHL1 as the protein mutated in human reducing body myopathy. Journal of Clinical Investigation, 2008, 118, 904-12.	3.9	126
2	Four and a Half LIM Protein 1 Binds Myosin-binding Protein C and Regulates Myosin Filament Formation and Sarcomere Assembly. Journal of Biological Chemistry, 2006, 281, 7666-7683.	1.6	113
3	ldentification of FHL1 as a regulator of skeletal muscle mass: implications for human myopathy. Journal of Cell Biology, 2008, 183, 1033-1048.	2.3	111
4	INPP5E interacts with AURKA, linking phosphoinositide signalling to primary cilium stability. Journal of Cell Science, 2015, 128, 364-72.	1.2	77
5	FHL3 Is an Actin-binding Protein That Regulates α-Actinin-mediated Actin Bundling. Journal of Biological Chemistry, 2003, 278, 24139-24152.	1.6	7 3
6	Four and a half LIM protein 1 gene mutations cause four distinct human myopathies: A comprehensive review of the clinical, histological and pathological features. Neuromuscular Disorders, 2011, 21, 237-251.	0.3	68
7	c-MYC-Induced Sebaceous Gland Differentiation Is Controlled by an Androgen Receptor/p53 Axis. Cell Reports, 2013, 3, 427-441.	2.9	66
8	Regulation of the Transcriptional Coactivator FHL2 Licenses Activation of the Androgen Receptor in Castrate-Resistant Prostate Cancer. Cancer Research, 2013, 73, 5066-5079.	0.4	53
9	BLIMP1 Is Required for Postnatal Epidermal Homeostasis but Does Not Define a Sebaceous Gland Progenitor under Steady-State Conditions. Stem Cell Reports, 2014, 3, 620-633.	2.3	49
10	The Androgen Receptor Antagonizes Wnt/ \hat{l}^2 -Catenin Signaling in Epidermal Stem Cells. Journal of Investigative Dermatology, 2015, 135, 2753-2763.	0.3	46
11	FHL3 binds MyoD and negatively regulates myotube formation. Journal of Cell Science, 2007, 120, 1423-1435.	1.2	44
12	Keratin 76 ls Required for Tight Junction Function and Maintenance of the Skin Barrier. PLoS Genetics, 2014, 10, e1004706.	1.5	32
13	Dose and context dependent effects of Myc on epidermal stem cell proliferation and differentiation. EMBO Molecular Medicine, 2010, 2, 16-25.	3.3	31
14	A mutation affecting laminin alpha 5 polymerisation gives rise to a syndromic developmental disorder. Development (Cambridge), 2020, 147, .	1.2	28
15	Loss of GRHL3 leads to TARC/CCL17-mediated keratinocyte proliferation in the epidermis. Cell Death and Disease, 2018, 9, 1072.	2.7	21
16	Identification of Genes Important for Cutaneous Function Revealed by a Large Scale Reverse Genetic Screen in the Mouse. PLoS Genetics, 2014, 10, e1004705.	1.5	20
17	Fetal inhibition of inflammation improves disease phenotypes in harlequin ichthyosis. Human Molecular Genetics, 2015, 24, 436-449.	1.4	17
18	SLIMMER (FHL1B/KyoT3) Interacts with the Proapoptotic Protein Siva-1 (CD27BP) and Delays Skeletal Myoblast Apoptosis. Journal of Biological Chemistry, 2009, 284, 26964-26977.	1.6	16

#	Article	IF	CITATIONS
19	AKT signaling promotes DNA damage accumulation and proliferation in polycystic kidney disease. Human Molecular Genetics, 2020, 29, 31-48.	1.4	13
20	ABCA12 regulates insulin secretion from βâ€cells. EMBO Reports, 2020, 21, e48692.	2.0	13
21	Regulation of PDGFC signalling and extracellular matrix composition by FREM1 in mice. DMM Disease Models and Mechanisms, 2013, 6, 1426-33.	1.2	11
22	BCLâ€XL exerts a protective role against anemia caused by radiationâ€induced kidney damage. EMBO Journal, 2020, 39, e105561.	3.5	7
23	CBE1 is a manchette and mitochondria associated protein with a potential role in somatic cell proliferation. Endocrinology, 2019, 160, 2573-2586.	1.4	5
24	p53 activity contributes to defective interfollicular epidermal differentiation in hyperproliferative murine skin. British Journal of Dermatology, 2016, 174, 204-208.	1.4	3
25	A profile of lipid dysregulation in harlequin ichthyosis. British Journal of Dermatology, 2017, 177, e217-e219.	1.4	2
26	Topical Aminosalicylic Acid Improves Keratinocyte Differentiation in an Inducible Mouse Model of Harlequin Ichthyosis. Cell Reports Medicine, 2020, 1, 100129.	3.3	O