Mark B Peacock

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2283223/publications.pdf Version: 2024-02-01

MARK R PEACOCK

#	Article	IF	CITATIONS
1	The M31 globular cluster system: <i>ugriz</i> and <i>K</i> -band photometry and structural parameters. Monthly Notices of the Royal Astronomical Society, 2010, 402, 803-818.	4.4	85
2	Optical Spectroscopy and Demographics of Redback Millisecond Pulsar Binaries. Astrophysical Journal, 2019, 872, 42.	4.5	77
3	1FGL J1417.7–4407: A LIKELY GAMMA-RAY BRIGHT BINARY WITH A MASSIVE NEUTRON STAR AND A GIANT SECONDARY. Astrophysical Journal Letters, 2015, 804, L12.	8.3	40
4	A NEW Î ³ -RAY LOUD, ECLIPSING LOW-MASS X-RAY BINARY. Astrophysical Journal, 2016, 831, 89.	4.5	40
5	EVIDENCE FOR A CONSTANT INITIAL MASS FUNCTION IN EARLY-TYPE GALAXIES BASED ON THEIR X-RAY BINARY POPULATIONS,. Astrophysical Journal, 2014, 784, 162.	4.5	31
6	A systematic study of low-mass X-ray binaries in the M31 globular cluster system. Monthly Notices of the Royal Astronomical Society, 0, 407, 2611-2624.	4.4	29
7	Wide Field CAMera survey of M31 globular clusters: low-mass X-ray binaries. Monthly Notices of the Royal Astronomical Society: Letters, 2009, 392, L55-L59.	3.3	28
8	THE X-RAY LUMINOSITY FUNCTION OF LOW MASS X-RAY BINARIES IN EARLY-TYPE GALAXIES, THEIR METAL-RICH, AND METAL-POOR GLOBULAR CLUSTERS. Astrophysical Journal, 2016, 818, 33.	4.5	20
9	TESTING STELLAR POPULATION SYNTHESIS MODELS WITH SLOAN DIGITAL SKY SURVEY COLORS OF M31's GLOBULAR CLUSTERS. Astrophysical Journal, 2011, 737, 5.	4.5	19
10	X-ray spectral variability of ultraluminous X-ray sources in extragalactic globular clusters. Monthly Notices of the Royal Astronomical Society, 2019, 485, 1694-1707.	4.4	17
11	SPATIALLY RESOLVED SPECTROSCOPY OF THE GLOBULAR CLUSTER RZ 2109 AND THE NATURE OF ITS BLACK HOLE. Astrophysical Journal, 2012, 759, 126.	4.5	15
12	OPTICAL SPECTROSCOPY OF THE HIGH-MASS <i>γ</i> -RAY BINARY 1FGL J1018.6â^'5856: A PROBABLE NEUTRO STAR PRIMARY. Astrophysical Journal Letters, 2015, 813, L26.	N _{8.3}	15
13	Globular clusters in the far-ultraviolet: evidence for He-enriched second populations in extragalactic globular clusters?. Monthly Notices of the Royal Astronomical Society, 2017, 464, 713-720.	4.4	14
14	X-Ray Variability from the Ultraluminous Black Hole Candidate X-Ray Binary in the Globular Cluster RZ 2109. Astrophysical Journal, 2018, 862, 108.	4.5	14
15	X-ray spectroscopy of newly identified ULXs associated with M87's globular cluster population. Monthly Notices of the Royal Astronomical Society, 2020, 497, 596-608.	4.4	13
16	LIMITS ON [O III] 5007 EMISSION FROM NGC 4472'S GLOBULAR CLUSTERS: CONSTRAINTS ON PLANETARY NEBULAE AND ULTRALUMINOUS BLACK HOLE X-RAY BINARIES IN GLOBULAR CLUSTERS. Astrophysical Journal, 2012, 752, 90.	4.5	12
17	Further Constraints on Variations in the Initial Mass Function from Low-mass X-ray Binary Populations. Astrophysical Journal, 2017, 841, 28.	4.5	12
18	Slow decline and rise of the broad [O iii] emission line in globular cluster black hole candidate RZ2109. Monthly Notices of the Royal Astronomical Society, 2019, 489, 4783-4790.	4.4	9

#	Article	IF	CITATIONS
19	Three ultraluminous X-ray sources hosted by globular clusters in NGC 1316. Monthly Notices of the Royal Astronomical Society, 2021, 504, 1545-1554.	4.4	7
20	Deep Chandra observations of NGCÂ7457, the X-ray point source populations of a low mass early-type galaxy. Monthly Notices of the Royal Astronomical Society, 0, , stw3375.	4.4	5
21	Hubble Space Telescope FUV observations of M31's globular clusters suggest a spatially homogeneous helium-enriched subpopulation. Monthly Notices of the Royal Astronomical Society, 2018, 481, 3313-3324.	4.4	5