Vito Fragnelli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2283021/publications.pdf

Version: 2024-02-01

840776 839539 51 422 11 18 citations h-index g-index papers 57 57 57 292 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Tree-connected peer group situations and peer group games. Mathematical Methods of Operations Research, 2002, 55, 93-106.	1.0	46
2	Two Approaches to the Problem of Sharing Delay Costs in Joint Projects. Annals of Operations Research, 2002, 109, 359-374.	4.1	38
3	Horizontal cooperation in a multimodal public transport system: The profit allocation problem. European Journal of Operational Research, 2019, 275, 659-665.	5.7	33
4	Weighted bankruptcy rules and the museum pass problem. European Journal of Operational Research, 2011, 215, 161-168.	5.7	31
5	A game theoretical approach to the classification problem in gene expression data analysis. Computers and Mathematics With Applications, 2008, 55, 950-959.	2.7	28
6	Using coalitional games on biological networks to measure centrality and power of genes. Bioinformatics, 2010, 26, 2721-2730.	4.1	26
7	On shortest path games. Mathematical Methods of Operations Research, 2000, 52, 251-264.	1.0	23
8	Balanced games arising from infinite linear models. Mathematical Methods of Operations Research, 1999, 50, 385-397.	1.0	16
9	Balancedness of infrastructure cost games. European Journal of Operational Research, 2002, 136, 635-654.	5.7	16
10	A cost allocation problem in urban solid wastes collection and disposal. Mathematical Methods of Operations Research, 2004, 59, 447.	1.0	14
11	Modeling the rational behavior of individuals on an e-commerce system. Operations Research Perspectives, 2018, 5, 22-31.	2.1	12
12	Sequencing interval situations and related games. Central European Journal of Operations Research, 2013, 21, 225-236.	1.8	10
13	The Shapley value in the Knaster gain game. Annals of Operations Research, 2017, 259, 1-19.	4.1	10
14	A survey of allocation rules for the museum pass problem. Journal of Cultural Economics, 2014, 38, 191-205.	2.2	9
15	Integer solutions to bankruptcy problems with non-integer claims. Top, 2014, 22, 892-933.	1.6	8
16	A game theoretic model for re-optimizing a railway timetable. European Transport Research Review, 2014, 6, 113-125.	4.8	8
17	An axiomatic characterization of the Baker-Thompson rule. Economics Letters, 2010, 107, 85-87.	1.9	6
18	A note on "Measurement of disproportionality in proportional representation systems― Mathematical and Computer Modelling, 2012, 55, 1655-1660.	2.0	6

#	Article	IF	CITATIONS
19	A fair procedure in insurance. Insurance: Mathematics and Economics, 2003, 33, 75-85.	1.2	5
20	ON COOPERATIVE GAMES RELATED TO MARKET SITUATIONS AND AUCTIONS. International Game Theory Review, 2009, 11, 459-470.	0.5	5
21	A bonus-malus approach to project management. Central European Journal of Operations Research, 2011, 19, 495-512.	1.8	5
22	Bankruptcy problems with non-integer claims: definition and characterizations of the ICEA Solution. Top, 2016, 24, 88-130.	1.6	5
23	Two-sided market situations with existing contracts. Social Choice and Welfare, 2010, 34, 295-313.	0.8	4
24	OPEN PROBLEMS IN COOPERATIVE LOCATION GAMES. International Game Theory Review, 2013, 15, 1340015.	0.5	4
25	Relationship between labeled network games and other cooperative games arising from attributes situations. Economics Letters, 2019, 185, 108708.	1.9	4
26	Labeled Network Allocation Problems. An Application to Transport Systems. Lecture Notes in Computer Science, 2019, , 90-108.	1.3	4
27	A note on bus games. Economics Letters, 2004, 82, 99-106.	1.9	3
28	Convex games with an infinite number of players and sequencing situations. Journal of Mathematical Analysis and Applications, 2010, 362, 200-209.	1.0	3
29	On 1-convexity and nucleolus of co-insurance games. Insurance: Mathematics and Economics, 2011, 48, 217-225.	1.2	3
30	Measuring the relevance of factors in the occurrences of events. Central European Journal of Operations Research, 2016, 24, 535-561.	1.8	3
31	Rationing methods for allocating the European Union's rural development funds in Poland. Economia Politica, 2019, 36, 295-322.	2.2	3
32	Multiobjective Games for Detecting Abnormally Expressed Genes. Mathematics, 2020, 8, 350.	2.2	3
33	Resolving an Insurance Allocation Problem: A Procedural Approach. Social Choice and Welfare, 2006, 26, 625-643.	0.8	2
34	BALANCEDNESS OF THE CLASS OF INFINITE PERMUTATION GAMES AND RELATED CLASSES OF GAMES. International Game Theory Review, 2007, 09, 425-435.	0.5	2
35	Remarks on the integer Talmud solution for integer bankruptcy problems. Top, 2017, 25, 127-163.	1.6	2
36	Indices of Criticality in Simple Games. International Game Theory Review, 2019, 21, 1940003.	0.5	2

#	Article	IF	Citations
37	Minimal winning coalitions and orders of criticality. Annals of Operations Research, 0, , 1.	4.1	2
38	A Note on Communication Structures. , 2013, , 467-473.		2
39	Co-Insurance Games and Environmental Pollution Risk. , 2004, , .		2
40	The nucleolus is well-posed. Journal of Mathematical Analysis and Applications, 2006, 314, 412-422.	1.0	1
41	A NOTE ON THE COMPUTATION OF THE SHAPLEY VALUE FOR VON NEUMANN–MORGENSTERN MARKET GAMES. International Game Theory Review, 2010, 12, 287-291.	0.5	1
42	Approximate stable solutions in infinite tree problems. Optimization, 2010, 59, 1123-1137.	1.7	1
43	Cooperative models for allocating an object. Economics Letters, 2012, 117, 227-229.	1.9	1
44	SOME NONSTANDARD FEATURES OF BARGAINING PROBLEMS. International Game Theory Review, 2013, 15, 1340007.	0.5	1
45	OPEN PROBLEMS IN VETO THEORY. International Game Theory Review, 2013, 15, 1340006.	0.5	1
46	A Game Theoretic Approach to an Emergency Units Location Problem. Springer Optimization and Its Applications, 2017, , 171-191.	0.9	1
47	Orders of Criticality in Graph Connection Games. Lecture Notes in Computer Science, 2019, , 35-46.	1.3	1
48	Two Classes of Cooperative Games Related to One-Object Auction Situations. SSRN Electronic Journal, 0, , .	0.4	1
49	A Note On The Owen Set Of Linear. Theory and Decision, 2004, 56, 205-213.	1.0	0
50	The bargaining set for sharing the power. Annals of Operations Research, 2014, 215, 49-61.	4.1	0
51	Cost Allocation in Common Facilities Sharing. International Game Theory Review, 2020, 22, 1950010.	0.5	0