Jessica K Tyler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2281922/publications.pdf

Version: 2024-02-01

95	8,164	70961 41 h-index	87
papers	citations		g-index
119	119	119	8517 citing authors
all docs	docs citations	times ranked	

#	Article	IF	Citations
1	A Proximity Ligation Method to Detect Proteins Bound to Single-Stranded DNA after DNA End Resection at DNA Double-Strand Breaks. Methods and Protocols, 2022, 5, 3.	0.9	1
2	DNA-PK promotes DNA end resection at DNA double strand breaks in GO cells. ELife, 2022, 11 , .	2.8	11
3	A Flow Cytometry-Based Method for Analyzing DNA End Resection in G0- and G1-Phase Mammalian Cells. Bio-protocol, 2022, 12, .	0.2	2
4	Selenium supplementation inhibits IGF-1 signaling and confers methionine restriction-like healthspan benefits to mice. ELife, 2021, 10, .	2.8	16
5	Sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) activity is required for $V(D)J$ recombination. Journal of Experimental Medicine, 2021, 218, .	4.2	8
6	LIN37-DREAM prevents DNA end resection and homologous recombination at DNA double-strand breaks in quiescent cells. ELife, 2021, 10, .	2.8	14
7	Histone and Chromatin Dynamics Facilitating DNA repair. DNA Repair, 2021, 107, 103183.	1.3	6
8	The RNF8 and RNF168 Ubiquitin Ligases Regulate Pro- and Anti-Resection Activities at Broken DNA Ends During Non-Homologous End Joining. DNA Repair, 2021, 108, 103217.	1.3	8
9	A new era for research into aging. ELife, 2021, 10, .	2.8	1
10	Chaperoning histones at the DNA repair dance. DNA Repair, 2021, 108, 103240.	1.3	11
11	Dynamic Incorporation of Histone H3 Variants into Chromatin Is Essential for Acquisition of Aggressive Traits and Metastatic Colonization. Cancer Cell, 2019, 36, 402-417.e13.	7.7	69
12	Is Gcn4-induced autophagy the ultimate downstream mechanism by which hormesis extends yeast replicative lifespan?. Current Genetics, 2019, 65, 717-720.	0.8	16
13	XLF and H2AX function in series to promote replication fork stability. Journal of Cell Biology, 2019, 218, 2113-2123.	2.3	15
14	NOVEL METHIONINE-RELATED INTERVENTIONS THAT CONFER HEALTHSPAN BENEFITS TO YEAST AND RODENTS. Innovation in Aging, 2019, 3, S67-S68.	0.0	0
15	The Histone Chaperones ASF1 and CAF-1 Promote MMS22L-TONSL-Mediated Rad51 Loading onto ssDNA during Homologous Recombination in Human Cells. Molecular Cell, 2018, 69, 879-892.e5.	4.5	69
16	Impaired cohesion and homologous recombination during replicative aging in budding yeast. Science Advances, 2018, 4, eaaq0236.	4.7	41
17	The role of autophagy in the regulation of yeast life span. Annals of the New York Academy of Sciences, 2018, 1418, 31-43.	1.8	40

#	Article	lF	CITATIONS
19	The histone chaperone ASF1 regulates the activation of ATM and DNA-PKcs in response to DNA double-strand breaks. Cell Cycle, 2018, 17, 1413-1424.	1.3	6
20	MRI Is a DNA Damage Response Adaptor during Classical Non-homologous End Joining. Molecular Cell, 2018, 71, 332-342.e8.	4.5	76
21	Thinking Outside the Cell: Replicating Replication InÂVitro. Molecular Cell, 2017, 65, 5-7.	4.5	1
22	Proteomic identification of histone post-translational modifications and proteins enriched at a DNA double-strand break. Nucleic Acids Research, 2017, 45, 10923-10940.	6.5	12
23	Anchoring Chromatin Loops to Cancer. Developmental Cell, 2017, 42, 209-211.	3.1	2
24	Deficiency of XLF and PAXX prevents DNA double-strand break repair by non-homologous end joining in lymphocytes. Cell Cycle, 2017, 16, 286-295.	1.3	36
25	The integrated stress response in budding yeast lifespan extension. Microbial Cell, 2017, 4, 368-375.	1.4	46
26	Delineation of the role of chromatin assembly and the Rtt101Mms1 E3 ubiquitin ligase in DNA damage checkpoint recovery in budding yeast. PLoS ONE, 2017, 12, e0180556.	1.1	14
27	Nucleosome disassembly during human non-homologous end joining followed by concerted HIRA- and CAF-1-dependent reassembly. ELife, 2016, 5, .	2.8	57
28	The Commercial Antibodies Widely Used to Measure H3 K56 Acetylation Are Non-Specific in Human and Drosophila Cells. PLoS ONE, 2016, 11, e0155409.	1.1	14
29	Nucleosomes Find Their Place in Life. Trends in Genetics, 2016, 32, 689-690.	2.9	2
30	Epigenetics and aging. Science Advances, 2016, 2, e1600584.	4.7	568
31	TIE2-mediated tyrosine phosphorylation of H4 regulates DNA damage response by recruiting ABL1. Science Advances, 2016, 2, e1501290.	4.7	33
32	Excess free histone H3 localizes to centrosomes for proteasome-mediated degradation during mitosis in metazoans. Cell Cycle, 2016, 15, 2216-2225.	1.3	1
33	Mutations that prevent or mimic persistent post-translational modifications of the histone H3 globular domain cause lethality and growth defects in Drosophila. Epigenetics and Chromatin, 2016, 9, 9.	1.8	15
34	Stressed-out chromatin promotes longevity. Nature, 2016, 534, 625-626.	13.7	1
35	The Overlooked Fact: Fundamental Need for Spike-In Control for Virtually All Genome-Wide Analyses. Molecular and Cellular Biology, 2016, 36, 662-667.	1.1	153
36	Aurora-A mediated histone H3 phosphorylation of threonine 118 controls condensin I and cohesin occupancy in mitosis. ELife, 2016, 5, e11402.	2.8	23

#	Article	IF	CITATIONS
37	The Cac1 subunit of histone chaperone CAF-1 organizes CAF-1-H3/H4 architecture and tetramerizes histones. ELife, 2016, 5, .	2.8	51
38	Development of novel cellular histone-binding and chromatin-displacement assays for bromodomain drug discovery. Epigenetics and Chromatin, 2015, 8, 37.	1.8	32
39	HDAC1,2 inhibition impairs EZH2- and BBAP- mediated DNA repair to overcome chemoresistance in EZH2 gain-of-function mutant diffuse large B-cell lymphoma. Oncotarget, 2015, 6, 4863-4887.	0.8	35
40	A matter of access. Transcription, 2014, 5, e29355.	1.7	4
41	Mitotic phosphorylation of histone H3 threonine 80. Cell Cycle, 2014, 13, 440-452.	1.3	32
42	Binding of the histone chaperone ASF1 to the CBP bromodomain promotes histone acetylation. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E1072-81.	3.3	52
43	MOF Phosphorylation by ATM Regulates 53BP1-Mediated Double-Strand Break Repair Pathway Choice. Cell Reports, 2014, 8, 177-189.	2.9	83
44	The BRCA1-Interacting Protein Abraxas Is Required for Genomic Stability and Tumor Suppression. Cell Reports, 2014, 8, 807-817.	2.9	34
45	Nucleosome loss leads to global transcriptional up-regulation and genomic instability during yeast aging. Genes and Development, 2014, 28, 396-408.	2.7	265
46	Histone Chaperones in the Assembly and Disassembly of Chromatin. , 2014, , 29-67.		3
47	DANPOS: Dynamic analysis of nucleosome position and occupancy by sequencing. Genome Research, 2013, 23, 341-351.	2.4	331
48	The C Terminus of the Histone Chaperone Asf1 Cross-Links to Histone H3 in Yeast and Promotes Interaction with Histones H3 and H4. Molecular and Cellular Biology, 2013, 33, 605-621.	1.1	20
49	How is epigenetic information maintained through DNA replication?. Epigenetics and Chromatin, 2013, 6, 32.	1.8	62
50	At the intersection of non-coding transcription, DNA repair, chromatin structure, and cellular senescence. Frontiers in Genetics, 2013, 4, 136.	1.1	22
51	Histone exchange and histone modifications during transcription and aging. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2012, 1819, 332-342.	0.9	79
52	The conformational flexibility of the C-terminus of histone H4 promotes histone octamer and nucleosome stability and yeast viability. Epigenetics and Chromatin, 2012, 5, 5.	1.8	20
53	Epigenetic regulation of genomic integrity. Chromosoma, 2012, 121, 131-151.	1.0	43
54	Chromatin structure as a mediator of aging. FEBS Letters, 2011, 585, 2041-2048.	1.3	167

#	Article	IF	CITATIONS
55	The histone shuffle: histone chaperones in an energetic dance. Trends in Biochemical Sciences, 2010, 35, 476-489.	3.7	154
56	Elevated Histone Expression Promotes Life Span Extension. Molecular Cell, 2010, 39, 724-735.	4.5	375
57	Chaperoning Histones during DNA Replication and Repair. Cell, 2010, 140, 183-195.	13.5	296
58	FACT and the Proteasome Promote Promoter Chromatin Disassembly and Transcriptional Initiation. Journal of Biological Chemistry, 2009, 284, 23461-23471.	1.6	63
59	Epigenetic inheritance of an inducibly nucleosome-depleted promoter and its associated transcriptional state in the apparent absence of transcriptional activators. Epigenetics and Chromatin, 2009, 2, 11.	1.8	11
60	CBP/p300-mediated acetylation of histone H3 on lysine 56. Nature, 2009, 459, 113-117.	13.7	620
61	Acetylated Lysine 56 on Histone H3 Drives Chromatin Assembly after Repair and Signals for the Completion of Repair. Cell, 2008, 134, 231-243.	13.5	387
62	Acetylation in the globular core of histone H3 on lysine-56 promotes chromatin disassembly during transcriptional activation. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 9000-9005.	3.3	189
63	Chromatin reassembly signals the end of DNA repair. Cell Cycle, 2008, 7, 3792-3797.	1.3	26
64	Chromatin Assembly and Disassembly During Genomic Processes. FASEB Journal, 2008, 22, 258.2.	0.2	0
65	Chromatin Disassembly from the <i>PHO5</i> Promoter Is Essential for the Recruitment of the General Transcription Machinery and Coactivators. Molecular and Cellular Biology, 2007, 27, 6372-6382.	1.1	83
66	The Histone Chaperone Anti-silencing Function 1 Stimulates the Acetylation of Newly Synthesized Histone H3 in S-phase. Journal of Biological Chemistry, 2007, 282, 1334-1340.	1.6	87
67	Transcriptional regulation by chromatin disassembly and reassembly. Current Opinion in Genetics and Development, 2007, 17, 88-93.	1.5	73
68	Chromatin disassembly and reassembly during DNA repair. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2007, 618, 52-64.	0.4	30
69	Structural Basis for the Histone Chaperone Activity of Asf1. Cell, 2006, 127, 495-508.	13.5	398
70	Transcriptional Activators Are Dispensable for Transcription in the Absence of Spt6-Mediated Chromatin Reassembly of Promoter Regions. Molecular Cell, 2006, 21, 405-416.	4.5	150
71	Transcriptional Activators Are Dispensable for Transcription in the Absence of Spt6-Mediated Chromatin Reassembly of Promoter Regions. Molecular Cell, 2006, 22, 147-148.	4.5	0
72	Dominant Mutants of the Saccharomyces cerevisiae ASF1 Histone Chaperone Bypass the Need for CAF-1 in Transcriptional Silencing by Altering Histone and Sir Protein Recruitment. Genetics, 2006, 173, 599-610.	1.2	26

#	Article	IF	CITATIONS
73	The histone chaperone ASF1 localizes to active DNA replication forks to mediate efficient DNA replication. FASEB Journal, 2006, 20, 488-490.	0.2	73
74	Global Replication-Independent Histone H4 Exchange in Budding Yeast. Eukaryotic Cell, 2006, 5, 1780-1787.	3.4	22
75	DNA Replication-Dependent Chromatin Assembly System. , 2006, , 287-295.		0
76	Functional Conservation and Specialization among Eukaryotic Anti-Silencing Function 1 Histone Chaperones. Eukaryotic Cell, 2005, 4, 1583-1590.	3 . 4	34
77	Localized Histone Acetylation and Deacetylation Triggered by the Homologous Recombination Pathway of Double-Strand DNA Repair. Molecular and Cellular Biology, 2005, 25, 4903-4913.	1.1	274
78	The Histone Chaperone Anti-Silencing Function 1 Is a Global Regulator of Transcription Independent of Passage through S Phase. Molecular and Cellular Biology, 2005, 25, 652-660.	1.1	51
79	The Yeast Histone Chaperone Chromatin Assembly Factor 1 Protects Against Double-Strand DNA-Damaging Agents. Genetics, 2005, 171, 1513-1522.	1.2	64
80	ASF1 Binds to a Heterodimer of Histones H3 and H4: A Two-Step Mechanism for the Assembly of the H3â^'H4 Heterotetramer on DNAâ€. Biochemistry, 2005, 44, 13673-13682.	1.2	121
81	Heterochromatin Focuses on Senescence. Molecular Cell, 2005, 17, 168-170.	4.5	16
82	Activation of the DNA Damage Checkpoint in Yeast Lacking the Histone Chaperone Anti-Silencing Function 1. Molecular and Cellular Biology, 2004, 24, 10313-10327.	1.1	90
83	The Histone Chaperone Asf1p Mediates Global Chromatin Disassembly in Vivo. Journal of Biological Chemistry, 2004, 279, 52069-52074.	1.6	92
84	Chromatin Disassembly Mediated by the Histone Chaperone Asf1 Is Essential for Transcriptional Activation of the Yeast PHO5 and PHO8 Genes. Molecular Cell, 2004, 14, 657-666.	4.5	275
85	Chromatin Disassembly Mediated by the Histone Chaperone Asf1 Is Essential for Transcriptional Activation of the Yeast PHO5 and PHO8 Genes. Molecular Cell, 2004, 15, 161.	4.5	1
86	Chromatin assembly factors: a dual function in nucleosome formation and mobilization?. Genes To Cells, 2003, 2, 593-600.	0.5	67
87	Chromatin assembly. FEBS Journal, 2002, 269, 2268-2274.	0.2	125
88	Interaction between the Drosophila CAF-1 and ASF1 Chromatin Assembly Factors. Molecular and Cellular Biology, 2001, 21, 6574-6584.	1.1	201
89	The RCAF complex mediates chromatin assembly during DNA replication and repair. Nature, 1999, 402, 555-560.	13.7	501
90	The "Dark Side―of Chromatin Remodeling. Cell, 1999, 99, 443-446.	13.5	223

#	Article	IF	CITATION
91	ATP-facilitated Chromatin Assembly with a Nucleoplasmin-like Protein from Drosophila melanogaster. Journal of Biological Chemistry, 1996, 271, 25041-25048.	1.6	79
92	Mutation of a single lysine residue severely impairs the DNA recognition and regulatory functions of the VZV gene 62 transactivator protein. Nucleic Acids Research, 1994, 22, 270-278.	6.5	25
93	The DNA binding domains of the varicella-zoster virus gene 62 and herpes simplex virus type 1 ICP4 transactivator proteins heterodimerize and bind to DNA. Nucleic Acids Research, 1994, 22, 711-721.	6.5	22
94	The DNA binding domain of the Varicella-zoster virus gene 62 protein interacts with multiple sequences which are similar to the binding site of the related protein of herpes simplex virus type 1 . Nucleic Acids Research, 1993 , 21 , 513 - 522 .	6.5	37
95	The Chromatin Landscape Channels DNA Double-Strand Breaks to Distinct Repair Pathways. Frontiers in Cell and Developmental Biology, 0, 10 , .	1.8	11