Pablo GonzÃ;lez-Moreno

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2281782/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Fall Armyworm: Impacts and Implications for Africa. Outlooks on Pest Management, 2017, 28, 196-201.	0.2	452
2	Monitoring plant diseases and pests through remote sensing technology: A review. Computers and Electronics in Agriculture, 2019, 165, 104943.	7.7	290
3	The changing role of ornamental horticulture in alien plant invasions. Biological Reviews, 2018, 93, 1421-1437.	10.4	251
4	Forecasting the global extent of invasion of the cereal pest Spodoptera frugiperda, the fall armyworm. NeoBiota, 0, 40, 25-50.	1.0	223
5	A Deep Learning-Based Approach for Automated Yellow Rust Disease Detection from High-Resolution Hyperspectral UAV Images. Remote Sensing, 2019, 11, 1554.	4.0	168
6	Protected areas offer refuge from invasive species spreading under climate change. Global Change Biology, 2017, 23, 5331-5343.	9.5	142
7	Invasive nonâ€native species likely to threaten biodiversity and ecosystems in the Antarctic Peninsula region. Clobal Change Biology, 2020, 26, 2702-2716.	9.5	110
8	Integrating invasive species policies across ornamental horticulture supply chains to prevent plant invasions. Journal of Applied Ecology, 2018, 55, 92-98.	4.0	108
9	A prioritised list of invasive alien species to assist the effective implementation of <scp>EU</scp> legislation. Journal of Applied Ecology, 2018, 55, 539-547.	4.0	86
10	The role of species charisma in biological invasions. Frontiers in Ecology and the Environment, 2020, 18, 345-353.	4.0	81
11	Plant invasions are contextâ€dependent: multiscale effects of climate, human activity and habitat. Diversity and Distributions, 2014, 20, 720-731.	4.1	77
12	Beyond climate: disturbance niche shifts in invasive species. Global Ecology and Biogeography, 2015, 24, 360-370.	5.8	67
13	Quantifying the landscape influence on plant invasions in Mediterranean coastal habitats. Landscape Ecology, 2013, 28, 891-903.	4.2	53
14	Landscape context modulates alien plant invasion in Mediterranean forest edges. Biological Invasions, 2013, 15, 547-557.	2.4	51
15	Consistency of impact assessment protocols for non-native species. NeoBiota, 0, 44, 1-25.	1.0	45
16	Assessing the assessments: evaluation of four impact assessment protocols for invasive alien species. Diversity and Distributions, 2017, 23, 297-307.	4.1	44
17	Wavelet-Based Rust Spectral Feature Set (WRSFs): A Novel Spectral Feature Set Based on Continuous Wavelet Transformation for Tracking Progressive Host–Pathogen Interaction of Yellow Rust on Wheat. Remote Sensing, 2018, 10, 525.	4.0	44
18	Is spatial structure the key to promote plant diversity in Mediterranean forest plantations?. Basic and Applied Ecology, 2011, 12, 251-259.	2.7	36

Pablo GonzÃilez-Moreno

#	Article	IF	CITATIONS
19	A review of impact assessment protocols of non-native plants. Biological Invasions, 2019, 21, 709-723.	2.4	33
20	Towards the top: niche expansion of <i>Taraxacum officinale</i> and <i>Ulex europaeus</i> in mountain regions of South America. Austral Ecology, 2017, 42, 577-589.	1.5	25
21	Niche shifts after longâ€distance dispersal events in bipolar sedges (<i>Carex</i> , Cyperaceae). American Journal of Botany, 2017, 104, 1765-1774.	1.7	22
22	Using structured eradication feasibility assessment to prioritize the management of new and emerging invasive alien species in Europe. Global Change Biology, 2020, 26, 6235-6250.	9.5	22
23	The effects of landscape history and time-lags on plant invasion in Mediterranean coastal habitats. Biological Invasions, 2017, 19, 549-561.	2.4	21
24	Environmental factors associated with the spatial distribution of invasive plant pathogens in the Iberian Peninsula: The case of Phytophthora cinnamomi Rands. Forest Ecology and Management, 2018, 419-420, 101-109.	3.2	21
25	The environmental drivers influencing spatio-temporal dynamics of oak defoliation and mortality in dehesas of Southern Spain. Forest Ecology and Management, 2021, 485, 118946.	3.2	16
26	Contrasting occurrence patterns of managed and native bumblebees in natural habitats across a greenhouse landscape gradient. Agriculture, Ecosystems and Environment, 2019, 272, 230-236.	5.3	13
27	Drought stress and pests increase defoliation and mortality rates in vulnerable Abies pinsapo forests. Forest Ecology and Management, 2022, 504, 119824.	3.2	13
28	Live Fuel Moisture Content Mapping in the Mediterranean Basin Using Random Forests and Combining MODIS Spectral and Thermal Data. Remote Sensing, 2022, 14, 3162.	4.0	13
29	What drives Eucalyptus globulus natural establishment outside plantations? The relative importance of climate, plantation and site characteristics. Biological Invasions, 2018, 20, 1129-1146.	2.4	12
30	A reappraisal of the role of humans in the biotic disturbance of islands. Environmental Conservation, 2017, 44, 371-380.	1.3	9
31	Effect of humidity and temperature on the performance of three strains of Aphalara itadori, a biocontrol agent for Japanese Knotweed. Biological Control, 2020, 146, 104269.	3.0	6
32	Combined effects of land-use intensification and plant invasion on native communities. Oecologia, 2020, 192, 823-836.	2.0	6
33	Effect of population density of the Azolla weevil (Stenopelmus rufinasus) on the surface cover of the water fern (Azolla filiculoides) in the UK. BioControl, 2018, 63, 185-192.	2.0	4
34	An overview of biological invasions at the landscape scale. Ecosistemas, 2014, 24, 84-92.	0.4	4
35	Assembly of species' climatic niches of coastal communities does not shift after invasion. Journal of Vegetation Science, 2021, 32, e12989.	2.2	0
36	Biotic and abiotic effects determining the resilience of conifer mountain forests: The case study of the endangered Spanish fir. Forest Ecology and Management, 2022, 520, 120356.	3.2	0