
## Birgit Arnholdt-Schmitt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2281770/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | From Plant Survival Under Severe Stress to Anti-Viral Human Defense – A Perspective That Calls for<br>Common Efforts. Frontiers in Immunology, 2021, 12, 673723.                                                                                                                            | 2.2 | 11        |
| 2  | ROS/RNS Balancing, Aerobic Fermentation Regulation and Cell Cycle Control – a Complex Early Trait<br>(â€~CoV-MAC-TED') for Combating SARS-CoV-2-Induced Cell Reprogramming. Frontiers in Immunology,<br>2021, 12, 673692.                                                                   | 2.2 | 12        |
| 3  | Genome-wide identification of ascorbate-glutathione cycle gene families in soybean (Glycine max)<br>reveals gene duplication events and specificity of gene members linked to development and stress<br>conditions. International Journal of Biological Macromolecules, 2021, 187, 528-543. | 3.6 | 12        |
| 4  | Adaptive Reprogramming During Early Seed Germination Requires Temporarily Enhanced<br>Fermentation-A Critical Role for Alternative Oxidase Regulation That Concerns Also Microbiota<br>Effectiveness. Frontiers in Plant Science, 2021, 12, 686274.                                         | 1.7 | 10        |
| 5  | Major Complex Trait for Early De Novo Programming â€~CoV-MAC-TED' Detected in Human Nasal Epithelial<br>Cells Infected by Two SARS-CoV-2 Variants Is Promising to Help in Designing Therapeutic Strategies.<br>Vaccines, 2021, 9, 1399.                                                     | 2.1 | 5         |
| 6  | Alternative Oxidase (AOX) Senses Stress Levels to Coordinate Auxin-Induced Reprogramming From<br>Seed Germination to Somatic Embryogenesis—A Role Relevant for Seed Vigor Prediction and Plant<br>Robustness. Frontiers in Plant Science, 2019, 10, 1134.                                   | 1.7 | 26        |
| 7  | Differential expression of recently duplicated PTOX genes in Glycine max during plant development and stress conditions. Journal of Bioenergetics and Biomembranes, 2019, 51, 355-370.                                                                                                      | 1.0 | 3         |
| 8  | Polymorphisms in plastoquinol oxidase (PTOX) from Arabidopsis accessions indicate SNP-induced structural variants associated with altitude and rainfall. Journal of Bioenergetics and Biomembranes, 2019, 51, 151-164.                                                                      | 1.0 | 3         |
| 9  | Predicting Biomass Production from Plant Robustness and Germination Efficiency by Calorespirometry. , 2018, , 81-94.                                                                                                                                                                        |     | 7         |
| 10 | AOX1-Subfamily Gene Members in Olea europaea cv. "Galega Vulgarâ€â€"Gene Characterization and<br>Expression of Transcripts during IBA-Induced in Vitro Adventitious Rooting. International Journal of<br>Molecular Sciences, 2018, 19, 597.                                                 | 1.8 | 23        |
| 11 | In silico identification of alternative oxidase 2 (AOX2) in monocots: A new evolutionary scenario.<br>Journal of Plant Physiology, 2017, 210, 58-63.                                                                                                                                        | 1.6 | 18        |
| 12 | A Driving Bioinformatics Approach to Explore Co-regulation of AOX Gene Family Members During<br>Growth and Development. Methods in Molecular Biology, 2017, 1670, 219-224.                                                                                                                  | 0.4 | 2         |
| 13 | Respiration Traits as Novel Markers for Plant Robustness Under the Threat of Climate Change: A<br>Protocol for Validation. Methods in Molecular Biology, 2017, 1670, 183-191.                                                                                                               | 0.4 | 4         |
| 14 | Calorespirometry: A Novel Tool in Functional Hologenomics to Select "Green―Holobionts for<br>Biomass Production. Methods in Molecular Biology, 2017, 1670, 193-201.                                                                                                                         | 0.4 | 2         |
| 15 | A Step-by-Step Protocol for Classifying AOX Proteins in Flowering Plants. Methods in Molecular<br>Biology, 2017, 1670, 225-234.                                                                                                                                                             | 0.4 | 6         |
| 16 | Studying Individual Plant AOX Gene Functionality in Early Growth Regulation: A New Approach.<br>Methods in Molecular Biology, 2017, 1670, 235-244.                                                                                                                                          | 0.4 | 8         |
| 17 | Laser Capture Microdissection for Amplification of Alternative Oxidase (AOX) Genes in Target Tissues<br>in Daucus carota L. Methods in Molecular Biology, 2017, 1670, 245-252.                                                                                                              | 0.4 | 4         |
| 18 | A Functional Approach towards Understanding the Role of the Mitochondrial Respiratory Chain in an<br>Endomycorrhizal Symbiosis. Frontiers in Plant Science, 2017, 8, 417.                                                                                                                   | 1.7 | 29        |

| #  | Article                                                                                                                                                                                                                                                                                              | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Stress-Induced Accumulation of DcAOX1 and DcAOX2a Transcripts Coincides with Critical Time Point for Structural Biomass Prediction in Carrot Primary Cultures (Daucus carota L.). Frontiers in Genetics, 2016, 7, 1.                                                                                 | 1.1 | 120       |
| 20 | Misannotation Awareness: A Tale of Two Gene-Groups. Frontiers in Plant Science, 2016, 7, 868.                                                                                                                                                                                                        | 1.7 | 40        |
| 21 | Alternative Oxidase Gene Family in Hypericum perforatum L.: Characterization and Expression at the Post-germinative Phase. Frontiers in Plant Science, 2016, 7, 1043.                                                                                                                                | 1.7 | 12        |
| 22 | Isolation and characterization of plastid terminal oxidase gene from carrot and its relation to carotenoid accumulation. Plant Gene, 2016, 5, 13-21.                                                                                                                                                 | 1.4 | 7         |
| 23 | Carrot plastid terminal oxidase gene ( DcPTOX ) responds early to chilling and harbors intronic pre-miRNAs related to plant disease defense. Plant Gene, 2016, 7, 21-25.                                                                                                                             | 1.4 | 7         |
| 24 | Allelic variation on DcAOX1 gene in carrot (Daucus carota L.): An interesting simple sequence repeat in<br>a highly variable intron. Plant Gene, 2016, 5, 49-55.                                                                                                                                     | 1.4 | 25        |
| 25 | Do Mitochondria Play a Central Role in Stress-Induced Somatic Embryogenesis?. Methods in Molecular<br>Biology, 2016, 1359, 87-100.                                                                                                                                                                   | 0.4 | 9         |
| 26 | Wild Carrot Differentiation in Europe and Selection at DcAOX1 Gene?. PLoS ONE, 2016, 11, e0164872.                                                                                                                                                                                                   | 1.1 | 9         |
| 27 | Intra and Inter-Spore Variability in Rhizophagus irregularis AOX Gene. PLoS ONE, 2015, 10, e0142339.                                                                                                                                                                                                 | 1.1 | 23        |
| 28 | Phenotyping carrot (Daucus carota L.) for yield-determining temperature response by calorespirometry. Planta, 2015, 241, 525-538.                                                                                                                                                                    | 1.6 | 16        |
| 29 | Selection of suitable reference genes for reverse transcription quantitative real-time PCR studies on different experimental systems from carrot (Daucus carota L.). Scientia Horticulturae, 2015, 186, 115-123.                                                                                     | 1.7 | 22        |
| 30 | Calorespirometry, oxygen isotope analysis and functional-marker-assisted selection ('CalOxy-FMAS')<br>for genotype screening: A novel concept and tool kit for predicting stable plant growth performance<br>and functional marker identification. Briefings in Functional Genomics, 2015, 15, 10-5. | 1.3 | 14        |
| 31 | Reference Genes Selection and Normalization of Oxidative Stress Responsive Genes upon Different<br>Temperature Stress Conditions in Hypericum perforatum L. PLoS ONE, 2014, 9, e115206.                                                                                                              | 1.1 | 44        |
| 32 | Functional marker development is challenged by the ubiquity of endophytesa practical perspective.<br>Briefings in Functional Genomics, 2014, 15, 16-21.                                                                                                                                              | 1.3 | 14        |
| 33 | A classification scheme for alternative oxidases reveals the taxonomic distribution and evolutionary history of the enzyme in angiosperms. Mitochondrion, 2014, 19, 172-183.                                                                                                                         | 1.6 | 55        |
| 34 | Calorespirometry as a tool for studying temperature response in carrot ( <i>Daucus carota</i> L.).<br>Engineering in Life Sciences, 2013, 13, 541-548.                                                                                                                                               | 2.0 | 13        |
| 35 | Functional Marker Development Across Species in Selected Traits. , 2013, , 467-515.                                                                                                                                                                                                                  |     | 16        |
| 36 | Involvement of alternative oxidase (AOX) in adventitious rooting of Olea europaea L. microshoots is<br>linked to adaptive phenylpropanoid and lignin metabolism. Plant Cell Reports, 2012, 31, 1581-1590.                                                                                            | 2.8 | 42        |

| #  | Article                                                                                                                                                                                                       | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Alternative oxidase (AOX) and phenolic metabolism in methyl jasmonate-treated hairy root cultures of<br>Daucus carota L Journal of Plant Physiology, 2012, 169, 657-663.                                      | 1.6 | 35        |
| 38 | Polymorphisms in intron 1 of carrot <i>AOX2b</i> – a useful tool to develop a functional marker?.<br>Plant Genetic Resources: Characterisation and Utilisation, 2011, 9, 177-180.                             | 0.4 | 13        |
| 39 | Induction of somatic embryogenesis as an example of stress-related plant reactions. Electronic<br>Journal of Biotechnology, 2010, 13, .                                                                       | 1.2 | 153       |
| 40 | The alternative oxidase family of <i>Vitis vinifera</i> reveals an attractive model to study the importance of genomic design. Physiologia Plantarum, 2009, 137, 553-565.                                     | 2.6 | 34        |
| 41 | Alternative oxidase involvement in <i>Daucus carota</i> somatic embryogenesis. Physiologia<br>Plantarum, 2009, 137, 498-508.                                                                                  | 2.6 | 34        |
| 42 | The gymnosperm <i>Pinus pinea</i> contains both <i>AOX</i> gene subfamilies, <i>AOX1</i> and <i>AOX2</i> . Physiologia Plantarum, 2009, 137, 566-577.                                                         | 2.6 | 23        |
| 43 | Differential expression and coâ€regulation of carrot <i>AOX</i> genes ( <i>Daucus carota</i> ).<br>Physiologia Plantarum, 2009, 137, 578-591.                                                                 | 2.6 | 43        |
| 44 | <i>Aox</i> gene structure, transcript variation and expression in plants. Physiologia Plantarum, 2009, 137, 342-353.                                                                                          | 2.6 | 76        |
| 45 | Temperature responses of substrate carbon conversion efficiencies and growth rates of plant tissues. Physiologia Plantarum, 2009, 137, 446-458.                                                               | 2.6 | 31        |
| 46 | Intron polymorphism pattern in <i>AOX1b</i> of wild St John's wort ( <i>Hypericum perforatum</i> )<br>allows discrimination between individual plants. Physiologia Plantarum, 2009, 137, 520-531.             | 2.6 | 32        |
| 47 | Carrot alternative oxidase gene <i>AOX2a</i> demonstrates allelic and genotypic polymorphisms in intron 3. Physiologia Plantarum, 2009, 137, 592-608.                                                         | 2.6 | 36        |
| 48 | Physiologic responses and gene diversity indicate olive alternative oxidase as a potential source for markers involved in efficient adventitious root induction. Physiologia Plantarum, 2009, 137, 532-552.   | 2.6 | 61        |
| 49 | Alternative oxidase (AOX) and stress tolerance–approaching a scientific hypothesis. Physiologia<br>Plantarum, 2009, 137, 314-315.                                                                             | 2.6 | 12        |
| 50 | Daucus carota L. – An old model for cell reprogramming gains new importance through a novel<br>expansion pattern of alternative oxidase (AOX) genes. Plant Physiology and Biochemistry, 2009, 47,<br>753-759. | 2.8 | 32        |
| 51 | AOX – a functional marker for efficient cell reprogramming under stress?. Trends in Plant Science, 2006, 11, 281-287.                                                                                         | 4.3 | 183       |
| 52 | Functional markers and a â€~systemic strategy': convergency between plant breeding, plant nutrition and molecular biology. Plant Physiology and Biochemistry, 2005, 43, 817-820.                              | 2.8 | 21        |
| 53 | Efficient cell reprogramming as a target for functional-marker strategies? Towards new perspectives in applied plant-nutrition research. Journal of Plant Nutrition and Soil Science, 2005, 168, 617-624.     | 1.1 | 21        |
| 54 | Stress-Induced Cell Reprogramming. A Role for Global Genome Regulation?: Figure 1 Plant Physiology, 2004, 136, 2579-2586.                                                                                     | 2.3 | 105       |

| #  | Article                                                                                                                                          | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Characterization of genome variation in tissue cultures by RAPD fingerprinting — A methodological comment. Plant Biosystems, 2001, 135, 115-120. | 0.8 | 10        |
| 56 | Embryogenesis of photoautotrophic cell cultures of Daucus carota L Plant Cell, Tissue and Organ<br>Culture, 1994, 38, 115-122.                   | 1.2 | 6         |