Itay Tirosh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/228137/publications.pdf

Version: 2024-02-01

70 papers

28,388 citations

57631 44 h-index 98622 67 g-index

78 all docs 78 docs citations

times ranked

78

39655 citing authors

#	Article	IF	CITATIONS
1	Highly Parallel Genome-wide Expression Profiling of Individual Cells Using Nanoliter Droplets. Cell, 2015, 161, 1202-1214.	13.5	5,908
2	Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science, 2014, 344, 1396-1401.	6.0	3,648
3	Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq. Science, 2016, 352, 189-196.	6.0	3,421
4	Single-Cell Transcriptomic Analysis of Primary and Metastatic Tumor Ecosystems in Head and Neck Cancer. Cell, 2017, 171, 1611-1624.e24.	13.5	1,656
5	An Integrative Model of Cellular States, Plasticity, and Genetics for Glioblastoma. Cell, 2019, 178, 835-849.e21.	13.5	1,408
6	A single-cell survey of the small intestinal epithelium. Nature, 2017, 551, 333-339.	13.7	1,197
7	Neoantigen vaccine generates intratumoral T cell responses in phase Ib glioblastoma trial. Nature, 2019, 565, 234-239.	13.7	956
8	A Cancer Cell Program Promotes T Cell Exclusion and Resistance to Checkpoint Blockade. Cell, 2018, 175, 984-997.e24.	13.5	892
9	Single-cell RNA-seq supports a developmental hierarchy in human oligodendroglioma. Nature, 2016, 539, 309-313.	13.7	875
10	Reconstructing and Reprogramming the Tumor-Propagating Potential of Glioblastoma Stem-like Cells. Cell, 2014, 157, 580-594.	13.5	751
11	Decoupling genetics, lineages, and microenvironment in IDH-mutant gliomas by single-cell RNA-seq. Science, 2017, 355, .	6.0	743
12	Single-cell RNA-seq reveals changes in cell cycle and differentiation programs upon aging of hematopoietic stem cells. Genome Research, 2015, 25, 1860-1872.	2.4	614
13	Developmental and oncogenic programs in H3K27M gliomas dissected by single-cell RNA-seq. Science, 2018, 360, 331-335.	6.0	461
14	A Yeast Hybrid Provides Insight into the Evolution of Gene Expression Regulation. Science, 2009, 324, 659-662.	6.0	388
15	T Helper Cell Cytokines Modulate Intestinal Stem Cell Renewal and Differentiation. Cell, 2018, 175, 1307-1320.e22.	13.5	388
16	A Genome-wide CRISPR Screen in Primary Immune Cells to Dissect Regulatory Networks. Cell, 2015, 162, 675-686.	13.5	383
17	Two strategies for gene regulation by promoter nucleosomes. Genome Research, 2008, 18, 1084-1091.	2.4	351
18	Single-Cell RNA Sequencing in Cancer: Lessons Learned and Emerging Challenges. Molecular Cell, 2019, 75, 7-12.	4.5	319

#	Article	IF	CITATIONS
19	A single-cell landscape of high-grade serous ovarian cancer. Nature Medicine, 2020, 26, 1271-1279.	15.2	267
20	Challenges and emerging directions in single-cell analysis. Genome Biology, 2017, 18, 84.	3.8	258
21	A genetic signature of interspecies variations in gene expression. Nature Genetics, 2006, 38, 830-834.	9.4	250
22	Interactions between cancer cells and immune cells drive transitions to mesenchymal-like states in glioblastoma. Cancer Cell, 2021, 39, 779-792.e11.	7.7	245
23	Pan-cancer single-cell RNA-seq identifies recurring programs of cellular heterogeneity. Nature Genetics, 2020, 52, 1208-1218.	9.4	226
24	Inhibitory CD161 receptor identified in glioma-infiltrating TÂcells by single-cell analysis. Cell, 2021, 184, 1281-1298.e26.	13.5	210
25	A Glial Signature and Wnt7 Signaling Regulate Glioma-Vascular Interactions and Tumor Microenvironment. Cancer Cell, 2018, 33, 874-889.e7.	7.7	180
26	High-throughput Phenotyping of Lung Cancer Somatic Mutations. Cancer Cell, 2016, 30, 214-228.	7.7	171
27	The Glioma Stem Cell Model in the Era of Single-Cell Genomics. Cancer Cell, 2020, 37, 630-636.	7.7	153
28	IFN \hat{I}^3 -Dependent Tissue-Immune Homeostasis Is Co-opted in the Tumor Microenvironment. Cell, 2017, 170, 127-141.e15.	13.5	140
29	Expression Noise and Acetylation Profiles Distinguish HDAC Functions. Molecular Cell, 2012, 47, 193-202.	4.5	112
30	Multiplexed single-cell transcriptional response profiling to define cancer vulnerabilities and therapeutic mechanism of action. Nature Communications, 2020, 11, 4296.	5.8	98
31	Promoter architecture and the evolvability of gene expression. Journal of Biology, 2009, 8, 95.	2.7	96
32	Divergence of nucleosome positioning between two closely related yeast species: genetic basis and functional consequences. Molecular Systems Biology, 2010, 6, 365.	3.2	96
33	Coupled Evolution of Transcription and mRNA Degradation. PLoS Biology, 2011, 9, e1001106.	2.6	86
34	Comparative analysis indicates regulatory neofunctionalization of yeast duplicates. Genome Biology, 2007, 8, R50.	13.9	83
35	Combined Analysis of Antigen Presentation and T-cell Recognition Reveals Restricted Immune Responses in Melanoma. Cancer Discovery, 2018, 8, 1366-1375.	7.7	80
36	Evolution of gene sequence and gene expression are not correlated in yeast. Trends in Genetics, 2008, 24, 109-113.	2.9	74

#	Article	IF	Citations
37	On the relation between promoter divergence and gene expression evolution. Molecular Systems Biology, 2008, 4, 159.	3.2	70
38	miR-142 orchestrates a network of actin cytoskeleton regulators during megakaryopoiesis. ELife, 2014, 3, e01964.	2.8	67
39	Single-cell sequencing and its applications in head and neck cancer. Oral Oncology, 2019, 99, 104441.	0.8	65
40	The pattern and evolution of yeast promoter bendability. Trends in Genetics, 2007, 23, 318-321.	2.9	62
41	Single cell RNA-seq highlights a role for a partial EMT in head and neck cancer. Molecular and Cellular Oncology, 2018, 5, e1448244.	0.3	61
42	Widespread remodeling of mid-coding sequence nucleosomes by Isw1. Genome Biology, 2010, 11, R49.	13.9	58
43	Chromatin regulators as capacitors of interspecies variations in gene expression. Molecular Systems Biology, 2010, 6, 435.	3.2	56
44	Dissecting human gliomas by single-cell RNA sequencing. Neuro-Oncology, 2018, 20, 37-43.	0.6	56
45	Genome-wide CRISPR screen identifies PRC2 and KMT2D-COMPASS as regulators of distinct EMT trajectories that contribute differentially to metastasis. Nature Cell Biology, 2022, 24, 554-564.	4.6	53
46	Glioblastoma cell populations with distinct oncogenic programs release podoplanin as procoagulant extracellular vesicles. Blood Advances, 2021, 5, 1682-1694.	2.5	46
47	Comparative biology: beyond sequence analysis. Current Opinion in Biotechnology, 2007, 18, 371-377.	3.3	45
48	Immunohistochemical quantification of partial-EMT in oral cavity squamous cell carcinoma primary tumors is associated with nodal metastasis. Oral Oncology, 2019, 99, 104458.	0.8	43
49	Decoupling epithelial-mesenchymal transitions from stromal profiles by integrative expression analysis. Nature Communications, 2021, 12, 2592.	5.8	42
50	Inferring regulatory mechanisms from patterns of evolutionary divergence. Molecular Systems Biology, 2011, 7, 530.	3.2	40
51	Widespread promoter-mediated coordination of transcription and mRNA degradation. Genome Biology, 2012, 13, R114.	13.9	39
52	Decoding Cancer Biology One Cell at a Time. Cancer Discovery, 2021, 11, 960-970.	7.7	37
53	Extensive divergence of yeast stress responses through transitions between induced and constitutive activation. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 16693-16698.	3.3	36
54	Deciphering Human Tumor Biology by Single-Cell Expression Profiling. Annual Review of Cancer Biology, 2019, 3, 151-166.	2.3	33

#	Article	IF	Citations
55	Tackling the Many Facets of Glioblastoma Heterogeneity. Cell Stem Cell, 2020, 26, 303-304.	5.2	29
56	Computational verification of protein-protein interactions by orthologous co-expression. BMC Bioinformatics, 2005, 6, 40.	1.2	28
57	Evolution of Nucleosome Occupancy: Conservation of Global Properties and Divergence of Gene-Specific Patterns. Molecular and Cellular Biology, 2011, 31, 4348-4355.	1.1	28
58	Malignant cell-specific CXCL14 promotes tumor lymphocyte infiltration in oral cavity squamous cell carcinoma., 2020, 8, e001048.		27
59	Single-Cell Deconvolution of Head and Neck Squamous Cell Carcinoma. Cancers, 2021, 13, 1230.	1.7	26
60	Autocorrelation analysis reveals widespread spatial biases in microarray experiments. BMC Genomics, 2007, 8, 164.	1.2	23
61	An activation to memory differentiation trajectory of tumor-infiltrating lymphocytes informs metastatic melanoma outcomes. Cancer Cell, 2022, 40, 524-544.e5.	7.7	23
62	A unique subset of glycolytic tumour-propagating cells drives squamous cell carcinoma. Nature Metabolism, 2021, 3, 182-195.	5.1	17
63	Promoter Nucleosome Organization Shapes the Evolution of Gene Expression. PLoS Genetics, 2012, 8, e1002579.	1.5	14
64	Chromatin Mediation of a Transcriptional Memory Effect in Yeast. G3: Genes, Genomes, Genetics, 2015, 5, 829-838.	0.8	11
65	Tumour inflammation signature and expression of S100A12 and HLA class I improve survival in HPV-negative hypopharyngeal cancer. Scientific Reports, 2021, 11, 1782.	1.6	11
66	Computational Analysis of Nucleosome Positioning. Methods in Molecular Biology, 2012, 833, 443-449.	0.4	9
67	Transcriptional priming of cytoplasmic post-transcriptional regulation. Transcription, 2011, 2, 258-262.	1.7	5
68	Nasopharyngeal carcinoma joins the singleâ€cell party. Cancer Communications, 2020, 40, 453-455.	3.7	3
69	OTME-7. Cancer - immune cell interactions drive transitions to mesenchymal-like state in glioblastoma. Neuro-Oncology Advances, 2021, 3, ii14-ii15.	0.4	0
70	Stochastic transitions as a major source of cancer heterogeneity. Nature Reviews Genetics, 0, , .	7.7	0