
Tatsuya Akutsu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2281262/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Control of Boolean networks: Hardness results and algorithms for tree structured networks. Journal of Theoretical Biology, 2007, 244, 670-679.	1.7	470
2	IDENTIFICATION OF GENETIC NETWORKS FROM A SMALL NUMBER OF GENE EXPRESSION PATTERNS UNDER THE BOOLEAN NETWORK MODEL. , 1998, , 17-28.		346
3	Protein homology detection using string alignment kernels. Bioinformatics, 2004, 20, 1682-1689.	4.1	310
4	iLearn: an integrated platform and meta-learner for feature engineering, machine-learning analysis and modeling of DNA, RNA and protein sequence data. Briefings in Bioinformatics, 2020, 21, 1047-1057.	6.5	294
5	PROSPER: An Integrated Feature-Based Tool for Predicting Protease Substrate Cleavage Sites. PLoS ONE, 2012, 7, e50300.	2.5	265
6	IPknot: fast and accurate prediction of RNA secondary structures with pseudoknots using integer programming. Bioinformatics, 2011, 27, i85-i93.	4.1	253
7	Dynamic programming algorithms for RNA secondary structure prediction with pseudoknots. Discrete Applied Mathematics, 2000, 104, 45-62.	0.9	251
8	iProt-Sub: a comprehensive package for accurately mapping and predicting protease-specific substrates and cleavage sites. Briefings in Bioinformatics, 2019, 20, 638-658.	6.5	166
9	Graph Kernels for Molecular Structureâ~'Activity Relationship Analysis with Support Vector Machines. Journal of Chemical Information and Modeling, 2005, 45, 939-951.	5.4	163
10	<i>Quokka</i> : a comprehensive tool for rapid and accurate prediction of kinase family-specific phosphorylation sites in the human proteome. Bioinformatics, 2018, 34, 4223-4231.	4.1	151
11	Cascleave: towards more accurate prediction of caspase substrate cleavage sites. Bioinformatics, 2010, 26, 752-760.	4.1	148
12	Algorithms for Identifying Boolean Networks and Related Biological Networks Based on Matrix Multiplication and Fingerprint Function. Journal of Computational Biology, 2000, 7, 331-343.	1.6	145
13	Dominating scale-free networks with variable scaling exponent: heterogeneous networks are not difficult to control. New Journal of Physics, 2012, 14, 073005.	2.9	137
14	A novel representation of protein sequences for prediction of subcellular location using support vector machines. Protein Science, 2005, 14, 2804-2813.	7.6	134
15	PROSPERous: high-throughput prediction of substrate cleavage sites for 90 proteases with improved accuracy. Bioinformatics, 2018, 34, 684-687.	4.1	131
16	A comprehensive review and performance evaluation of bioinformatics tools for HLA class I peptide-binding prediction. Briefings in Bioinformatics, 2020, 21, 1119-1135.	6.5	127
17	PREvalL, an integrative approach for inferring catalytic residues using sequence, structural, and network features in a machine-learning framework. Journal of Theoretical Biology, 2018, 443, 125-137.	1.7	124
18	<i>iLearnPlus:</i> a comprehensive and automated machine-learning platform for nucleic acid and protein sequence analysis, prediction and visualization. Nucleic Acids Research, 2021, 49, e60-e60.	14.5	124

#	Article	IF	CITATIONS
19	Bastion6: a bioinformatics approach for accurate prediction of type VI secreted effectors. Bioinformatics, 2018, 34, 2546-2555.	4.1	108
20	DeepCleave: a deep learning predictor for caspase and matrix metalloprotease substrates and cleavage sites. Bioinformatics, 2020, 36, 1057-1065.	4.1	102
21	RactIP: fast and accurate prediction of RNA-RNA interaction using integer programming. Bioinformatics, 2010, 26, i460-i466.	4.1	99
22	Large-scale comparative assessment of computational predictors for lysine post-translational modification sites. Briefings in Bioinformatics, 2019, 20, 2267-2290.	6.5	99
23	Comprehensive review and assessment of computational methods for predicting RNA post-transcriptional modification sites from RNA sequences. Briefings in Bioinformatics, 2020, 21, 1676-1696.	6.5	98
24	Extensions of marginalized graph kernels. , 2004, , .		96
25	KCaM (KEGG Carbohydrate Matcher): a software tool for analyzing the structures of carbohydrate sugar chains. Nucleic Acids Research, 2004, 32, W267-W272.	14.5	95
26	Structural controllability of unidirectional bipartite networks. Scientific Reports, 2013, 3, 1647.	3.3	88
27	Computational analysis and prediction of lysine malonylation sites by exploiting informative features in an integrative machine-learning framework. Briefings in Bioinformatics, 2019, 20, 2185-2199.	6.5	82
28	An approximation method for solving the steady-state probability distribution of probabilistic Boolean networks. Bioinformatics, 2007, 23, 1511-1518.	4.1	75
29	PhosphoPredict: A bioinformatics tool for prediction of human kinase-specific phosphorylation substrates and sites by integrating heterogeneous feature selection. Scientific Reports, 2017, 7, 6862.	3.3	72
30	Procleave: Predicting Protease-specific Substrate Cleavage Sites by Combining Sequence and Structural Information. Genomics, Proteomics and Bioinformatics, 2020, 18, 52-64.	6.9	71
31	Twenty years of bioinformatics research for protease-specific substrate and cleavage site prediction: a comprehensive revisit and benchmarking of existing methods. Briefings in Bioinformatics, 2019, 20, 2150-2166.	6.5	70
32	Bastion3: a two-layer ensemble predictor of type III secreted effectors. Bioinformatics, 2019, 35, 2017-2028.	4.1	69
33	Systematic analysis and prediction of type IV secreted effector proteins by machine learning approaches. Briefings in Bioinformatics, 2019, 20, 931-951.	6.5	65
34	Cascleave 2.0, a new approach for predicting caspase and granzyme cleavage targets. Bioinformatics, 2014, 30, 71-80.	4.1	63
35	Identification of genetic networks by strategic gene disruptions and gene overexpressions under a boolean model. Theoretical Computer Science, 2003, 298, 235-251.	0.9	61
36	Prediction using step-wise L1, L2 regularization and feature selection for small data sets with large number of features. BMC Bioinformatics, 2011, 12, 412.	2.6	60

#	Article	IF	CITATIONS
37	Algorithms for Finding Small Attractors in Boolean Networks. Eurasip Journal on Bioinformatics and Systems Biology, 2007, 2007, 1-13.	1.4	58
38	Minimum dominating set-based methods for analyzing biological networks. Methods, 2016, 102, 57-63.	3.8	57
39	HSEpred: predict half-sphere exposure from protein sequences. Bioinformatics, 2008, 24, 1489-1497.	4.1	53
40	On the approximation of largest common subtrees and largest common point sets. Theoretical Computer Science, 2000, 233, 33-50.	0.9	50
41	Analysis of critical and redundant nodes in controlling directed and undirected complex networks using dominating sets. Journal of Complex Networks, 2014, 2, 394-412.	1.8	50
42	ON CONSTRUCTION OF STOCHASTIC GENETIC NETWORKS BASED ON GENE EXPRESSION SEQUENCES. International Journal of Neural Systems, 2005, 15, 297-310.	5.2	49
43	Prediction of RNA secondary structure with pseudoknots using integer programming. BMC Bioinformatics, 2009, 10, S38.	2.6	49
44	Subcellular location prediction of proteins using support vector machines with alignment of block sequences utilizing amino acid composition. BMC Bioinformatics, 2007, 8, 466.	2.6	44
45	Finding Minimum Reaction Cuts of Metabolic Networks Under a Boolean Model Using Integer Programming and Feedback Vertex Sets. International Journal of Knowledge Discovery in Bioinformatics, 2010, 1, 14-31.	0.8	44
46	Computational identification of eukaryotic promoters based on cascaded deep capsule neural networks. Briefings in Bioinformatics, 2021, 22, .	6.5	44
47	Simulation study in Probabilistic Boolean Network models for genetic regulatory networks. International Journal of Data Mining and Bioinformatics, 2007, 1, 217.	0.1	43
48	FunSAV: Predicting the Functional Effect of Single Amino Acid Variants Using a Two-Stage Random Forest Model. PLoS ONE, 2012, 7, e43847.	2.5	43
49	Distribution of Distances and Triangles in a Point Set and Algorithms for Computing the Largest Common Point Sets. Discrete and Computational Geometry, 1998, 20, 307-331.	0.6	42
50	On the approximation of protein threading. Theoretical Computer Science, 1999, 210, 261-275.	0.9	42
51	Enumerating Treelike Chemical Graphs with Given Path Frequency. Journal of Chemical Information and Modeling, 2008, 48, 1345-1357.	5.4	42
52	DAFS: simultaneous aligning and folding of RNA sequences via dual decomposition. Bioinformatics, 2012, 28, 3218-3224.	4.1	40
53	DeepVF: a deep learning-based hybrid framework for identifying virulence factors using the stacking strategy. Briefings in Bioinformatics, 2021, 22, .	6.5	40
54	Prodepth: Predict Residue Depth by Support Vector Regression Approach from Protein Sequences Only. PLoS ONE, 2009, 4, e7072.	2.5	40

#	Article	IF	CITATIONS
55	Causalcall: Nanopore Basecalling Using a Temporal Convolutional Network. Frontiers in Genetics, 2019, 10, 1332.	2.3	39
56	ALGORITHMS FOR INFERRING QUALITATIVE MODELS OF BIOLOGICAL NETWORKS. , 1999, , 293-304.		39
57	SecretEPDB: a comprehensive web-based resource for secreted effector proteins of the bacterial types III, IV and VI secretion systems. Scientific Reports, 2017, 7, 41031.	3.3	38
58	Recent Progress on the Analysis of Power-law Features in Complex Cellular Networks. Cell Biochemistry and Biophysics, 2007, 49, 37-47.	1.8	37
59	Finding a Periodic Attractor of a Boolean Network. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2012, 9, 1410-1421.	3.0	37
60	Anthem: a user customised tool for fast and accurate prediction of binding between peptides and HLA class I molecules. Briefings in Bioinformatics, 2021, 22, .	6.5	37
61	TANGLE: Two-Level Support Vector Regression Approach for Protein Backbone Torsion Angle Prediction from Primary Sequences. PLoS ONE, 2012, 7, e30361.	2.5	36
62	PeNGaRoo, a combined gradient boosting and ensemble learning framework for predicting non-classical secreted proteins. Bioinformatics, 2020, 36, 704-712.	4.1	36
63	Correlation between structure and temperature in prokaryotic metabolic networks. BMC Bioinformatics, 2007, 8, 303.	2.6	35
64	A score matrix to reveal the hidden links in glycans. Bioinformatics, 2005, 21, 1457-1463.	4.1	34
65	Feature weight estimation for gene selection: a local hyperlinear learning approach. BMC Bioinformatics, 2014, 15, 70.	2.6	34
66	Optimizing amino acid substitution matrices with a local alignment kernel. BMC Bioinformatics, 2006, 7, 246.	2.6	33
67	Structurally robust control of complex networks. Physical Review E, 2015, 91, 012826.	2.1	33
68	Computational Methods for Modification of Metabolic Networks. Computational and Structural Biotechnology Journal, 2015, 13, 376-381.	4.1	33
69	BIOINFORMATIC APPROACHES FOR PREDICTING SUBSTRATES OF PROTEASES. Journal of Bioinformatics and Computational Biology, 2011, 09, 149-178.	0.8	31
70	Efficient Extraction of Mapping Rules of Atoms from Enzymatic Reaction Data. Journal of Computational Biology, 2004, 11, 449-462.	1.6	30
71	Network control principles for identifying personalized driver genes in cancer. Briefings in Bioinformatics, 2020, 21, 1641-1662.	6.5	29
72	Detecting a Singleton Attractor in a Boolean Network Utilizing SAT Algorithms. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2009, E92-A, 493-501.	0.3	27

#	Article	IF	CITATIONS
73	On approximation algorithms for local multiple alignment. , 2000, , .		26
74	Point matching under non-uniform distortions. Discrete Applied Mathematics, 2003, 127, 5-21.	0.9	26
75	Sector dominance ratio analysis of financial markets. Physica A: Statistical Mechanics and Its Applications, 2015, 421, 488-509.	2.6	25
76	Determining a singleton attractor of an AND/OR Boolean network in time. Information Processing Letters, 2010, 110, 565-569.	0.6	24
77	Conditional random field approach to prediction of protein-protein interactions using domain information. BMC Systems Biology, 2011, 5, S8.	3.0	24
78	An Integrative Computational Framework Based on a Two-Step Random Forest Algorithm Improves Prediction of Zinc-Binding Sites in Proteins. PLoS ONE, 2012, 7, e49716.	2.5	24
79	Critical controllability in proteome-wide protein interaction network integrating transcriptome. Scientific Reports, 2016, 6, 23541.	3.3	24
80	A Control Model for Markovian Genetic Regulatory Networks. Lecture Notes in Computer Science, 2006, , 36-48.	1.3	24
81	Prediction of Heterodimeric Protein Complexes from Weighted Protein-Protein Interaction Networks Using Novel Features and Kernel Functions. PLoS ONE, 2013, 8, e65265.	2.5	24
82	<i>iFeatureOmega:</i> an integrative platform for engineering, visualization and analysis of features from molecular sequences, structural and ligand data sets. Nucleic Acids Research, 2022, 50, W434-W447.	14.5	24
83	Inferring strengths of protein-protein interactions from experimental data using linear programming. Bioinformatics, 2003, 19, ii58-ii65.	4.1	23
84	ldentification of novel DNA repair proteins via primary sequence, secondary structure, and homology. BMC Bioinformatics, 2009, 10, 25.	2.6	23
85	A grammatical approach to RNA–RNA interaction prediction. Pattern Recognition, 2009, 42, 531-538.	8.1	23
86	Determining Associations between Human Diseases and non-coding RNAs with Critical Roles in Network Control. Scientific Reports, 2015, 5, 14577.	3.3	23
87	A Mathematical Model for the Detection Mechanism of DNA Double-Strand Breaks Depending on Autophosphorylation of ATM. PLoS ONE, 2009, 4, e5131.	2.5	22
88	Approximation and parameterized algorithms for common subtrees and edit distance between unordered trees. Theoretical Computer Science, 2013, 470, 10-22.	0.9	22
89	On control of singleton attractors in multiple Boolean networks: integer programming-based method. BMC Systems Biology, 2014, 8, S7.	3.0	22
90	Critical evaluation of <i>in silico</i> methods for prediction of coiled-coil domains in proteins. Briefings in Bioinformatics, 2016, 17, 270-282.	6.5	22

#	Article	IF	CITATIONS
91	On determining the congruence of point sets in d dimensions. Computational Geometry: Theory and Applications, 1998, 9, 247-256.	0.5	21
92	Title is missing!. Journal of Combinatorial Optimization, 1999, 3, 321-336.	1.3	21
93	Two complementary representations of a scale-free network. Physica A: Statistical Mechanics and Its Applications, 2005, 349, 349-363.	2.6	21
94	A probabilistic model for mining labeled ordered trees: capturing patterns in carbohydrate sugar chains. IEEE Transactions on Knowledge and Data Engineering, 2005, 17, 1051-1064.	5.7	21
95	Convolutional neural network approach to lung cancer classification integrating protein interaction network and gene expression profiles. Journal of Bioinformatics and Computational Biology, 2019, 17, 1940007.	0.8	21
96	Tree Edit Distance Problems: Algorithms and Applications to Bioinformatics. IEICE Transactions on Information and Systems, 2010, E93-D, 208-218.	0.7	20
97	Exact algorithms for computing the tree edit distance between unordered trees. Theoretical Computer Science, 2011, 412, 352-364.	0.9	20
98	Determining a Singleton Attractor of a Boolean Network with Nested Canalyzing Functions. Journal of Computational Biology, 2011, 18, 1275-1290.	1.6	20
99	Integer Programming-Based Approach to Attractor Detection and Control of Boolean Networks. IEICE Transactions on Information and Systems, 2012, E95.D, 2960-2970.	0.7	20
100	Circulating Exosomal miRNA Profiles Predict the Occurrence and Recurrence of Hepatocellular Carcinoma in Patients with Direct-Acting Antiviral-Induced Sustained Viral Response. Biomedicines, 2019, 7, 87.	3.2	20
101	Efficient tree-matching methods for accurate carbohydrate database queries. Genome Informatics, 2003, 14, 134-43.	0.4	20
102	Fast and accurate database homology search using upper bounds of local alignment scores. Bioinformatics, 2005, 21, 912-921.	4.1	19
103	Inferring a graph from path frequency. Discrete Applied Mathematics, 2012, 160, 1416-1428.	0.9	19
104	COMPARISON AND ENUMERATION OF CHEMICAL GRAPHS. Computational and Structural Biotechnology Journal, 2013, 5, e201302004.	4.1	19
105	Prediction of heterotrimeric protein complexes by two-phase learning using neighboring kernels. BMC Bioinformatics, 2014, 15, S6.	2.6	19
106	Network controllability analysis of intracellular signalling reveals viruses are actively controlling molecular systems. Scientific Reports, 2019, 9, 2066.	3.3	19
107	Stochastic simulation of Boolean rxncon models: towards quantitative analysis of large signaling networks. BMC Systems Biology, 2015, 9, 45.	3.0	18
108	Identifying a Probabilistic Boolean Threshold Network From Samples. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29, 869-881.	11.3	18

#	Article	IF	CITATIONS
109	Approximate string matching with don't care characters. Information Processing Letters, 1995, 55, 235-239.	0.6	17
110	Structure of n-clique networks embedded in a complex network. Physica A: Statistical Mechanics and Its Applications, 2007, 380, 665-672.	2.6	17
111	COMPOUND ANALYSIS VIA GRAPH KERNELS INCORPORATING CHIRALITY. Journal of Bioinformatics and Computational Biology, 2010, 08, 63-81.	0.8	17
112	A clique-based method for the edit distance between unordered trees and its application to analysis of glycan structures. BMC Bioinformatics, 2011, 12, S13.	2.6	17
113	Rtips: fast and accurate tools for RNA 2D structure prediction using integer programming. Nucleic Acids Research, 2012, 40, W29-W34.	14.5	17
114	A Clique-Based Method Using Dynamic Programming for Computing Edit Distance Between Unordered Trees. Journal of Computational Biology, 2012, 19, 1089-1104.	1.6	17
115	Finding optimal degenerate patterns in DNA sequences. Bioinformatics, 2003, 19, ii206-ii214.	4.1	16
116	A relation between edit distance for ordered trees and edit distance for Euler strings. Information Processing Letters, 2006, 100, 105-109.	0.6	16
117	Prediction of Protein Folding Rates from Structural Topology and Complex Network Properties. IPSJ Transactions on Bioinformatics, 2010, 3, 40-53.	0.2	16
118	Comparing biological networks via graph compression. BMC Systems Biology, 2010, 4, S13.	3.0	16
119	Efficient Enumeration of Stereoisomers of Outerplanar Chemical Graphs Using Dynamic Programming. Journal of Chemical Information and Modeling, 2011, 51, 2788-2807.	5.4	16
120	Analysis on critical nodes in controlling complex networks using dominating sets. , 2013, , .		16
121	Complex network-based approaches to biomarker discovery. Biomarkers in Medicine, 2016, 10, 621-632.	1.4	16
122	Algorithms for Inference, Analysis and Control of Boolean Networks. Lecture Notes in Computer Science, 2008, , 1-15.	1.3	16
123	Inferring a Graph from Path Frequency. Lecture Notes in Computer Science, 2005, , 371-382.	1.3	15
124	Approximating Tree Edit Distance through String Edit Distance. Algorithmica, 2010, 57, 325-348.	1.3	15
125	Branch-and-Bound Algorithms for Enumerating Treelike Chemical Graphs with Given Path Frequency Using Detachment-Cut. Journal of Chemical Information and Modeling, 2010, 50, 934-946.	5.4	15
126	Probabilistic controllability approach to metabolic fluxes in normal and cancer tissues. Nature Communications, 2019, 10, 2725.	12.8	15

#	Article	IF	CITATIONS
127	Inhibitory neurons exhibit high controlling ability in the cortical microconnectome. PLoS Computational Biology, 2021, 17, e1008846.	3.2	15
128	Clustering under the line graph transformation: application to reaction network. BMC Bioinformatics, 2004, 5, 207.	2.6	14
129	PROTEIN SIDE-CHAIN PACKING PROBLEM: A MAXIMUM EDGE-WEIGHT CLIQUE ALGORITHMIC APPROACH. Journal of Bioinformatics and Computational Biology, 2005, 03, 103-126.	0.8	14
130	Efficient enumeration of monocyclic chemical graphs with given path frequencies. Journal of Cheminformatics, 2014, 6, 31.	6.1	14
131	Improving prediction of heterodimeric protein complexes using combination with pairwise kernel. BMC Bioinformatics, 2018, 19, 39.	2.6	14
132	ncRNA-disease association prediction based on sequence information and tripartite network. BMC Systems Biology, 2018, 12, 37.	3.0	14
133	Finding and analysing the minimum set of driver nodes required to control multilayer networks. Scientific Reports, 2019, 9, 576.	3.3	14
134	Protease target prediction via matrix factorization. Bioinformatics, 2019, 35, 923-929.	4.1	14
135	Approximating minimum keys and optimal substructure screens. Lecture Notes in Computer Science, 1996, , 290-299.	1.3	14
136	Completing Networks Using Observed Data. Lecture Notes in Computer Science, 2009, , 126-140.	1.3	14
137	Application of a new probabilistic model for recognizing complex patterns in glycans. Bioinformatics, 2004, 20, i6-i14.	4.1	13
138	Optimizing substitution matrices by separating score distributions. Bioinformatics, 2004, 20, 863-873.	4.1	13
139	Origin of structural difference in metabolic networks with respect to temperature. BMC Systems Biology, 2008, 2, 82.	3.0	13
140	LBSizeCleav: improved support vector machine (SVM)-based prediction of Dicer cleavage sites using loop/bulge length. BMC Bioinformatics, 2016, 17, 487.	2.6	13
141	Determining the minimum number of protein-protein interactions required to support known protein complexes. PLoS ONE, 2018, 13, e0195545.	2.5	13
142	Toward more accurate prediction of caspase cleavage sites: a comprehensive review of current methods, tools and features. Briefings in Bioinformatics, 2019, 20, 1669-1684.	6.5	13
143	A simple method for inferring strengths of protein-protein interactions. Genome Informatics, 2004, 15, 56-68.	0.4	13
144	A bisection algorithm for grammar-based compression of ordered trees. Information Processing Letters, 2010, 110, 815-820.	0.6	12

#	Article	IF	CITATIONS
145	Enumerating tree-like chemical graphs with given upper and lower bounds on path frequencies. BMC Bioinformatics, 2011, 12, S3.	2.6	12
146	A Polynomial-Time Algorithm for Computing the Maximum Common Connected Edge Subgraph of Outerplanar Graphs of Bounded Degree. Algorithms, 2013, 6, 119-135.	2.1	12
147	Deep learning with evolutionary and genomic profiles for identifying cancer subtypes. Journal of Bioinformatics and Computational Biology, 2019, 17, 1940005.	0.8	12
148	Algorithms for identifying Boolean networks and related biological networks based on matrix multiplication and fingerprint function. , 2000, , .		11
149	Network Completion Using Dynamic Programming and Least-Squares Fitting. Scientific World Journal, The, 2012, 2012, 1-8.	2.1	11
150	Critical assessment of computational tools for prokaryotic and eukaryotic promoter prediction. Briefings in Bioinformatics, 2022, 23, .	6.5	11
151	A new method of computer representation of stereochemistry. Transforming a stereochemical structure into a graph. Journal of Chemical Information and Computer Sciences, 1991, 31, 414-417.	2.8	10
152	A simple greedy algorithm for finding functional relations: efficient implementation and average case analysis. Theoretical Computer Science, 2003, 292, 481-495.	0.9	10
153	Algorithms for Singleton Attractor Detection in Planar and Nonplanar AND/OR Boolean Networks. Mathematics in Computer Science, 2009, 2, 401-420.	0.4	10
154	Prediction of protein-RNA residue-base contacts using two-dimensional conditional random field with the lasso. BMC Systems Biology, 2013, 7, S15.	3.0	10
155	Prediction of Protein-Protein Interaction Strength Using Domain Features with Supervised Regression. Scientific World Journal, The, 2014, 2014, 1-7.	2.1	10
156	Analysis of the Effect of Degree Correlation on the Size of Minimum Dominating Sets in Complex Networks. PLoS ONE, 2016, 11, e0157868.	2.5	10
157	Enumerating Substituted Benzene Isomers of Tree-Like Chemical Graphs. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2018, 15, 633-646.	3.0	10
158	PROTEIN THREADING WITH PROFILES AND DISTANCE CONSTRAINTS USING CLIQUE BASED ALGORITHMS. Journal of Bioinformatics and Computational Biology, 2006, 04, 19-42.	0.8	9
159	Efficient enumeration of stereoisomers of tree structured molecules using dynamic programming. Journal of Mathematical Chemistry, 2011, 49, 910-970.	1.5	9
160	Proteome compression via protein domain compositions. Methods, 2014, 67, 380-385.	3.8	9
161	Exact Identification of the Structure of a Probabilistic Boolean Network from Samples. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2016, 13, 1107-1116.	3.0	9
162	Convolutional Neural Network Approach to Lung Cancer Classification Integrating Protein		9

Interaction Network and Gene Expression Profiles. , 2018, , .

#	Article	IF	CITATIONS
163	DeepBL: a deep learning-based approach for <i>in silico</i> discovery of beta-lactamases. Briefings in Bioinformatics, 2021, 22, .	6.5	9
164	A Novel Method for Inference of Chemical Compounds of Cycle Index Two with Desired Properties Based on Artificial Neural Networks and Integer Programming. Algorithms, 2020, 13, 124.	2.1	9
165	IMPROVED ALGORITHMS FOR ENUMERATING TREE-LIKE CHEMICAL GRAPHS WITH GIVEN PATH FREQUENCY. , 2008, , .		9
166	Distribution of distances and triangles in a point set and algorithms for computing the largest common point sets. , 1997, , .		8
167	Algorithms and Complexity Analyses for Control of Singleton Attractors in Boolean Networks. Eurasip Journal on Bioinformatics and Systems Biology, 2008, 2008, 1-16.	1.4	8
168	Integer programming-based methods for attractor detection and control of boolean networks. , 2009, , .		8
169	Analysis on controlling complex networks based on dominating sets. Journal of Physics: Conference Series, 2013, 410, 012104.	0.4	8
170	Critical controllability analysis of directed biological networks using efficient graph reduction. Scientific Reports, 2017, 7, 14361.	3.3	8
171	Analysis of Critical and Redundant Vertices in Controlling Directed Complex Networks Using Feedback Vertex Sets. Journal of Computational Biology, 2018, 25, 1071-1090.	1.6	8
172	Identification of the Structure of a Probabilistic Boolean Network From Samples Including Frequencies of Outcomes. IEEE Transactions on Neural Networks and Learning Systems, 2019, 30, 2383-2396.	11.3	8
173	A Novel Method for the Inverse QSAR/QSPR based on Artificial Neural Networks and Mixed Integer Linear Programming with Guaranteed Admissibility. , 2020, , .		8
174	Improved algorithms for enumerating tree-like chemical graphs with given path frequency. Genome Informatics, 2008, 21, 53-64.	0.4	8
175	Performance analysis of a greedy algorithm for inferring Boolean functions. Information Processing Letters, 2005, 93, 7-12.	0.6	7
176	Recent Advances in RNA Secondary Structure Prediction with Pseudoknots. Current Bioinformatics, 2006, 1, 115-129.	1.5	7
177	Statistical Learning Algorithm for Tree Similarity. , 2007, , .		7
178	Improved approximation of the largest common subtree of two unordered trees of bounded height. Information Processing Letters, 2008, 109, 165-170.	0.6	7
179	Measuring Structural Robustness of Metabolic Networks under a Boolean Model Using Integer Programming and Feedback Vertex Sets. , 2009, , .		7
180	USING BINDING PROFILES TO PREDICT BINDING SITES OF TARGET RNAs. Journal of Bioinformatics and Computational Biology, 2011, 09, 697-713.	0.8	7

#	Article	IF	CITATIONS
181	Conservation Laws and Symmetries in Competitive Systems. Progress of Theoretical Physics Supplement, 2012, 194, 210-222.	0.1	7
182	An Improved Satisfiability Algorithm for Nested Canalyzing Functions and its Application to Determining a Singleton Attractor of a Boolean Network. Journal of Computational Biology, 2013, 20, 958-969.	1.6	7
183	Computing Smallest Intervention Strategies for Multiple Metabolic Networks in a Boolean Model. Journal of Computational Biology, 2015, 22, 85-110.	1.6	7
184	FINDING AND ANALYZING THE MINIMUM SET OF DRIVER NODES IN CONTROL OF BOOLEAN NETWORKS. International Journal of Modeling, Simulation, and Scientific Computing, 2016, 19, 1650006.	1.4	7
185	An accessibility-incorporated method for accurate prediction of RNA–RNA interactions from sequence data. Bioinformatics, 2017, 33, 202-209.	4.1	7
186	A Mixed Integer Linear Programming Formulation to Artificial Neural Networks. , 2019, , .		7
187	On the approximation of largest common subtrees and largest common point sets. Lecture Notes in Computer Science, 1994, , 405-413.	1.3	7
188	An Improved Algorithm for Detecting a Singleton Attractor in a Boolean Network Consisting of AND/OR Nodes. Lecture Notes in Computer Science, 2008, , 216-229.	1.3	7
189	Integer Programming-Based Method for Designing Synthetic Metabolic Networks by Minimum Reaction Insertion in a Boolean Model. PLoS ONE, 2014, 9, e92637.	2.5	7
190	Recent Advances in Predicting Functional Impact of Single Amino Acid Polymorphisms: A Review of Useful Features, Computational Methods and Available Tools. Current Bioinformatics, 2013, 8, 161-176.	1.5	7
191	Enumerating Stereoisomers of Tree Structured Molecules Using Dynamic Programming. Lecture Notes in Computer Science, 2009, , 14-23.	1.3	7
192	Point matching under non-uniform distortions and protein side chain packing based on an efficient maximum clique algorithm. Genome Informatics, 2002, 13, 143-52.	0.4	7
193	Matching of Spots in 2D Electrophoresis Images. Point Matching Under Non-uniform Distortions. Lecture Notes in Computer Science, 1999, , 212-222.	1.3	6
194	Dynamic Programming Algorithms and Grammatical Modeling for Protein Beta-Sheet Prediction. Journal of Computational Biology, 2009, 16, 945-957.	1.6	6
195	Flux balance impact degree: a new definition of impact degree to properly treat reversible reactions in metabolic networks. Bioinformatics, 2013, 29, 2178-2185.	4.1	6
196	Finding optimal control policy in probabilistic Boolean Networks with hard constraints by using integer programming and dynamic programming. International Journal of Data Mining and Bioinformatics, 2013, 7, 321.	0.1	6
197	On the complexity of finding a largest common subtree of bounded degree. Theoretical Computer Science, 2015, 590, 2-16.	0.9	6
198	Comparison of Pseudoknotted RNA Secondary Structures by Topological Centroid Identification and Tree Edit Distance. Journal of Computational Biology, 2020, 27, 1443-1451.	1.6	6

#	Article	IF	CITATIONS
199	A New Integer Linear Programming Formulation to the Inverse QSAR/QSPR for Acyclic Chemical Compounds Using Skeleton Trees. Lecture Notes in Computer Science, 2020, , 433-444.	1.3	6
200	Integer programming-based method for grammar-based tree compression and its application to pattern extraction of glycan tree structures. BMC Bioinformatics, 2010, 11, S4.	2.6	5
201	Discriminative random field approach to prediction of protein residue contacts. , 2011, , .		5
202	A quadsection algorithm for grammar-based image compression. Integrated Computer-Aided Engineering, 2012, 19, 23-38.	4.6	5
203	Singleton and 2-periodic attractors of sign-definite Boolean networks. Information Processing Letters, 2012, 112, 35-38.	0.6	5
204	BREADTH-FIRST SEARCH APPROACH TO ENUMERATION OF TREE-LIKE CHEMICAL COMPOUNDS. Journal of Bioinformatics and Computational Biology, 2013, 11, 1343007.	0.8	5
205	Survival Analysis by Penalized Regression and Matrix Factorization. Scientific World Journal, The, 2013, 2013, 1-11.	2.1	5
206	Novel Bioinformatics Approaches for Analysis of High-Throughput Biological Data. BioMed Research International, 2014, 2014, 1-3.	1.9	5
207	Discrimination of singleton and periodic attractors in Boolean networks. Automatica, 2017, 84, 205-213.	5.0	5
208	On the number of driver nodes for controlling a Boolean network when the targets are restricted to attractors. Journal of Theoretical Biology, 2019, 463, 1-11.	1.7	5
209	Controllability Methods for Identifying Associations Between Critical Control ncRNAs and Human Diseases. Methods in Molecular Biology, 2019, 1912, 289-300.	0.9	5
210	An FVS-based Approach to Attractor Detection in Asynchronous Random Boolean Networks. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2020, PP, 1-1.	3.0	5
211	An Inverse QSAR Method Based on a Two-Layered Model and Integer Programming. International Journal of Molecular Sciences, 2021, 22, 2847.	4.1	5
212	A Polynomial-Time Algorithm for Computing the Maximum Common Subgraph of Outerplanar Graphs of Bounded Degree. Lecture Notes in Computer Science, 2012, , 76-87.	1.3	5
213	A Method for the Inverse QSAR/QSPR Based on Artificial Neural Networks and Mixed Integer Linear Programming. , 2020, , .		5
214	An O(1.787 n)-Time Algorithm for Detecting a Singleton Attractor in a Boolean Network Consisting of AND/OR Nodes. Lecture Notes in Computer Science, 2007, , 494-505.	1.3	5
215	On the approximation of protein threading. , 1997, , .		4
216	Managing and analyzing carbohydrate data. SIGMOD Record, 2004, 33, 33-38.	1.2	4

#	Article	IF	CITATIONS
217	Identification of metabolic units induced by environmental signals. Bioinformatics, 2006, 22, e375-e383.	4.1	4
218	Analyses and Algorithms for Predecessor and Control Problems for Boolean Networks of Bounded Indegree. IPSJ Transactions on Bioinformatics, 2008, 1, 23-34.	0.2	4
219	Finding optimal control policy in Probabilistic Boolean Networks with hard constraints by using integer programming and dynamic programming. , 2010, , .		4
220	An Improved Clique-Based Method for Computing Edit Distance between Unordered Trees and Its Application to Comparison of Glycan Structures. , 2011, , .		4
221	Efficient Exponential Time Algorithms for Edit Distance between Unordered Trees. Lecture Notes in Computer Science, 2012, , 360-372.	1.3	4
222	Theoretical estimation of metabolic network robustness against multiple reaction knockouts using branching process approximation. Physica A: Statistical Mechanics and Its Applications, 2013, 392, 5525-5535.	2.6	4
223	Archaeal <i>β</i> diversity patterns under the seafloor along geochemical gradients. Journal of Geophysical Research G: Biogeosciences, 2014, 119, 1770-1788.	3.0	4
224	Discrimination of attractors with noisy nodes in Boolean networks. Automatica, 2021, 130, 109630.	5.0	4
225	A novel method for inference of acyclic chemical compounds with bounded branch-height based on artificial neural networks and integer programming. Algorithms for Molecular Biology, 2021, 16, 18.	1.2	4
226	Algorithms for determining the geometrical congruity in two and three dimensions. Lecture Notes in Computer Science, 1992, , 279-288.	1.3	4
227	On the Complexity of the Maximum Common Subgraph Problem for Partial k-Trees of Bounded Degree. Lecture Notes in Computer Science, 2012, , 146-155.	1.3	4
228	Breast Cancer Subtype by Imbalanced Omics Data through A Deep Learning Fusion Model. , 2020, , .		4
229	An Overview of Bioinformatics Methods for Analyzing Autism Spectrum Disorders. Current Pharmaceutical Design, 2020, 25, 4552-4559.	1.9	4
230	On the complexity of deriving score functions from examples for problems in molecular biology. Lecture Notes in Computer Science, 1998, , 832-843.	1.3	3
231	Selecting Informative Genes for Cancer Classification Using Gene Expression Data. , 2003, , 79-91.		3
232	FAST ALGORITHMS FOR COMPARISON OF SIMILAR UNORDERED TREES. International Journal of Foundations of Computer Science, 2006, 17, 703-729.	1.1	3
233	Genetic Regulatory Networks. Eurasip Journal on Bioinformatics and Systems Biology, 2007, 2007, 1-2.	1.4	3
234	DYNAMIC PROGRAMMING ALGORITHMS FOR RNA STRUCTURE PREDICTION WITH BINDING SITES. , 2009, , 98-107.		3

#	Article	IF	CITATIONS
235	Predicting functional impact of single amino acid polymorphisms by integrating sequence and structural features. , 2011, , .		3
236	An Efficient Method of Computing Impact Degrees for Multiple Reactions in Metabolic Networks with Cycles. IEICE Transactions on Information and Systems, 2011, E94-D, 2393-2399.	0.7	3
237	Analysis of the impact degree distribution in metabolic networks using branching process approximation. Physica A: Statistical Mechanics and Its Applications, 2012, 391, 379-387.	2.6	3
238	Stability and restoration phenomena in competitive systems. Progress of Theoretical and Experimental Physics, 2013, 2013, .	6.6	3
239	An Efficient Data Assimilation Schema for Restoration and Extension of Gene Regulatory Networks Using Time-Course Observation Data. Journal of Computational Biology, 2014, 21, 785-798.	1.6	3
240	Efficient exponential-time algorithms for edit distance between unordered trees. Journal of Discrete Algorithms, 2014, 25, 79-93.	0.7	3
241	Grammar-based compression approach to extraction of common rules among multiple trees of glycans and RNAs. BMC Bioinformatics, 2015, 16, 128.	2.6	3
242	Enumeration method for tree-like chemical compounds with benzene rings and naphthalene rings by breadth-first search order. BMC Bioinformatics, 2016, 17, 113.	2.6	3
243	Weighted minimum feedback vertex sets and implementation in human cancer genes detection. BMC Bioinformatics, 2021, 22, 143.	2.6	3
244	New and improved algorithms for unordered tree inclusion. Theoretical Computer Science, 2021, 883, 83-98.	0.9	3
245	A Novel Method for the Inverse QSAR/QSPR to Monocyclic Chemical Compounds Based on Artificial Neural Networks and Integer Programming. Transactions on Computational Science and Computational Intelligence, 2021, , 641-655.	0.3	3
246	On determining the congruity of point sets in higher dimensions. Lecture Notes in Computer Science, 1994, , 38-46.	1.3	3
247	Extracting boolean and probabilistic rules from trained neural networks. Neural Networks, 2020, 126, 300-311.	5.9	3
248	INFERRING A CHEMICAL STRUCTURE FROM A FEATURE VECTOR BASED ON FREQUENCY OF LABELED PATHS AND SMALL FRAGMENTS. , 2007, , .		3
249	Efficient extraction of mapping rules of atoms from enzymatic reaction data. , 2003, , .		3
250	On Finding a Fixed Point in a Boolean Network with Maximum Indegree 2. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2009, E92-A, 1771-1778.	0.3	3
251	On the Complexity of Inference and Completion of Boolean Networks from Given Singleton Attractors. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2013, E96.A, 2265-2274.	0.3	3
252	Logic-based approach to expert systems in chemistry. Knowledge-Based Systems, 1991, 4, 103-116.	7.1	2

#	Article	IF	CITATIONS
253	On PAC learnability of functional dependencies. New Generation Computing, 1994, 12, 359-374.	3.3	2
254	Rapid protein fragment search using hash functions based on the Fourier transform. Bioinformatics, 1997, 13, 357-364.	4.1	2
255	A Simple Greedy Algorithm for Finding Functional Relations: Efficient Implementation and Average Case Analysis. Lecture Notes in Computer Science, 2000, , 86-98.	1.3	2
256	Performance Analysis of a Greedy Algorithm for Inferring Boolean Functions. Lecture Notes in Computer Science, 2003, , 114-127.	1.3	2
257	Integer programming-based approach to allocation of reporter genes for cell array analysis. International Journal of Bioinformatics Research and Applications, 2008, 4, 385.	0.2	2
258	Efficient computation of impact degrees for multiple reactions in metabolic networks with cycles. , 2009, , .		2
259	Kernel Methods for Chemical Compounds: From Classification to Design. IEICE Transactions on Information and Systems, 2011, E94-D, 1846-1853.	0.7	2
260	Exact and Heuristic Methods for Network Completion for Time-Varying Genetic Networks. BioMed Research International, 2014, 2014, 1-13.	1.9	2
261	Network Completion for Static Gene Expression Data. Advances in Bioinformatics, 2014, 2014, 1-9.	5.7	2
262	Domain-Based Approaches to Prediction and Analysis of Protein-Protein Interactions. International Journal of Knowledge Discovery in Bioinformatics, 2014, 4, 24-41.	0.8	2
263	Genomic data assimilation using a higher moment filtering technique for restoration of gene regulatory networks. BMC Systems Biology, 2015, 9, 14.	3.0	2
264	Host-Pathogen Protein Interaction Prediction Based on Local Topology Structures of a Protein Interaction Network. , 2016, , .		2
265	Finding Influential Genes Using Gene Expression Data and Boolean Models of Metabolic Networks. , 2016, , .		2
266	Maximum margin classifier working in a set of strings. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2016, 472, 20150551.	2.1	2
267	A likelihood-free filtering method via approximate Bayesian computation in evaluating biological simulation models. Computational Statistics and Data Analysis, 2016, 94, 63-74.	1.2	2
268	Computing Minimum Reaction Modifications in a Boolean Metabolic Network. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2018, 15, 1853-1862.	3.0	2
269	Optimal string clustering based on a Laplace-like mixture and EM algorithm on a set of strings. Journal of Computer and System Sciences, 2019, 106, 94-128.	1.2	2
270	ReCGBM: a gradient boosting-based method for predicting human dicer cleavage sites. BMC Bioinformatics, 2021, 22, 63.	2.6	2

#	Article	IF	CITATIONS
271	Approximate string matching with don't care characters. Lecture Notes in Computer Science, 1994, , 240-249.	1.3	2
272	An Efficient Algorithm for Generating Colored Outerplanar Graphs. , 2007, , 573-583.		2
273	Constant Factor Approximation of Edit Distance of Bounded Height Unordered Trees. Lecture Notes in Computer Science, 2009, , 7-17.	1.3	2
274	Exact Algorithms for Finding a Minimum Reaction Cut under a Boolean Model of Metabolic Networks. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2010, E93-A, 1497-1507.	0.3	2
275	Domain-Based Prediction and Analysis of Protein-Protein Interactions. , 2009, , 29-44.		2
276	On PAC learnability of functional dependencies. Lecture Notes in Computer Science, 1993, , 229-239.	1.3	2
277	Attractor detection and enumeration algorithms for Boolean networks. Computational and Structural Biotechnology Journal, 2022, 20, 2512-2520.	4.1	2
278	ALGORITHMS FOR POINT SET MATCHING WITH k-DIFFERENCES. International Journal of Foundations of Computer Science, 2006, 17, 903-917.	1.1	1
279	A Grammatical Approach to RNA-RNA Interaction Prediction. AIP Conference Proceedings, 2007, , .	0.4	1
280	On the complexity of deriving position specific score matrices from positive and negative sequences. Discrete Applied Mathematics, 2007, 155, 676-685.	0.9	1
281	Measuring the Similarity of Protein Structures Using Image Compression Algorithms. IEICE Transactions on Information and Systems, 2011, E94-D, 2468-2478.	0.7	1
282	Protein complex prediction via improved verification methods using constrained domain-domain matching. International Journal of Bioinformatics Research and Applications, 2012, 8, 210.	0.2	1
283	Predicting protein-RNA residue-base contacts using two-dimensional conditional random field. , 2012, , ·		1
284	Network Completion for Time Varying Genetic Networks. , 2013, , .		1
285	Measuring the similarity of protein structures using image local feature descriptors SIFT and SURF. , 2014, , .		1
286	Chapter 5: Theory and Method of Completion for a Boolean Regulatory Network Using Observed Data. Science, Engineering, and Biology Informatics, 2014, , 123-145.	0.1	1
287	Parallelization of enumerating tree-like chemical compounds by breadth-first search order. BMC Medical Genomics, 2015, 8, S15.	1.5	1
288	Intelligent Informatics in Translational Medicine. BioMed Research International, 2015, 2015, 1-2.	1.9	1

#	Article	IF	CITATIONS
289	Similar Subtree Search Using Extended Tree Inclusion. IEEE Transactions on Knowledge and Data Engineering, 2015, 27, 3360-3373.	5.7	1
290	Enumeration Method for Structural Isomers Containing User-Defined Structures Based on Breadth-First Search Approach. Journal of Computational Biology, 2016, 23, 625-640.	1.6	1
291	Intelligent Informatics in Translational Medicine 2016. BioMed Research International, 2017, 2017, 1-2.	1.9	1
292	Deep Learning with Evolutionary and Genomic Profiles for Identifying Cancer Subtypes. , 2018, , .		1
293	Resource Cut, a New Bounding Procedure to Algorithms for Enumerating Tree-Like Chemical Graphs. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2019, 16, 77-90.	3.0	1
294	Improved Hardness of Maximum Common Subgraph Problems on Labeled Graphs of Bounded Treewidth and Bounded Degree. International Journal of Foundations of Computer Science, 2020, 31, 253-273.	1.1	1
295	An Inverse QSAR Method Based on Decision Tree and Integer Programming. Lecture Notes in Computer Science, 2021, , 628-644.	1.3	1
296	On the Distribution of Successor States in Boolean Threshold Networks. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33, 4147-4159.	11.3	1
297	Uncovering and classifying the role of driven nodes in control of complex networks. Scientific Reports, 2021, 11, 9627.	3.3	1
298	On the Complexity of Deriving Position Specific Score Matrices from Examples. Lecture Notes in Computer Science, 2002, , 168-177.	1.3	1
299	Finding Minimum Reaction Cuts of Metabolic Networks Under a Boolean Model. , 0, , 240-258.		1
300	Latent Topic Extraction from Relational Table for Record Matching. Lecture Notes in Computer Science, 2009, , 449-456.	1.3	1
301	Approximation and Exact Algorithms for RNA Secondary Structure Prediction and Recognition of Stochastic Context-Free Languages. Lecture Notes in Computer Science, 1998, , 338-347.	1.3	1
302	A Fixed-Parameter Algorithm for Detecting a Singleton Attractor in an AND/OR Boolean Network with Bounded Treewidth. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2015, E98.A, 384-390.	0.3	1
303	Identification of periodic attractors in Boolean networks using a priori information. PLoS Computational Biology, 2022, 18, e1009702.	3.2	1
304	Integer programming-based method for completing signaling pathways and its application to analysis of colorectal cancer. Genome Informatics, 2010, 24, 193-203.	0.4	1
305	Molecular Design Based on Artificial Neural Networks, Integer Programming and Grid Neighbor Search. , 2021, , .		1
306	Computational and Statistical Methods in Bioinformatics. Lecture Notes in Computer Science, 2005, , 11-33.	1.3	0

ΤΑΤЅԱΥΑ ΑΚUTSU

#	Article	IF	CITATIONS
307	Selecting Informative Genes for Cancer Classification Using Gene Expression Data. , 2006, , 75-88.		0
308	Finding Incoming Global States in Boolean Networks. , 2007, , .		0
309	INTEGER PROGRAMMING-BASED METHOD FOR COMPLETING SIGNALING PATHWAYS AND ITS APPLICATION TO ANALYSIS OF COLORECTAL CANCER. , 2010, , .		0
310	A Variational Bayesian EM Algorithm for Tree Similarity. , 2010, , .		0
311	Matrix Network: A New Data Structure for Efficient Enumeration of Microstates of a Genetic Regulatory Network. Journal of Information Processing, 2015, 23, 804-813.	0.4	0
312	On observability of attractors in Boolean Networks. , 2015, , .		0
313	Similar subtree search using extended tree inclusion. , 2016, , .		0
314	On the parameterized complexity of associative and commutative unification. Theoretical Computer Science, 2017, 660, 57-74.	0.9	0
315	Selected Papers from the 16th International Conference on Bioinformatics (InCoB 2017). Journal of Bioinformatics and Computational Biology, 2017, 15, 1702003.	0.8	0
316	Euler String-Based Compression of Tree-Structured Data and its Application to Analysis of RNAs. Current Bioinformatics, 2018, 13, 25-33.	1.5	0
317	Algorithms for Analysis and Control of Boolean Networks. Lecture Notes in Computer Science, 2018, , 3-7.	1.3	0
318	Enumerating Chemical Mono-Block 3-Augmented Trees with Two Junctions. , 2018, , .		0
319	On the Compressive Power of Boolean Threshold Autoencoders. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34, 921-931.	11.3	0
320	An Improved Integer Programming Formulation for Inferring Chemical Compounds with Prescribed Topological Structures. Lecture Notes in Computer Science, 2021, , 197-209.	1.3	0
321	Probabilistic Critical Controllability Analysis of Protein Interaction Networks Integrating Normal Brain Ageing Gene Expression Profiles. International Journal of Molecular Sciences, 2021, 22, 9891.	4.1	0
322	Inferring a Union of Halfspaces from Examples. Lecture Notes in Computer Science, 2002, , 117-126.	1.3	0
323	Algorithms for Point Set Matching with k-Differences. Lecture Notes in Computer Science, 2004, , 249-258.	1.3	0

Algorithmic Aspects of Protein Threading. , 2006, , 118-135.

0

#	Article	IF	CITATIONS
325	A NOVEL CLUSTERING METHOD FOR ANALYSIS OF BIOLOGICAL NETWORKS USING MAXIMAL COMPONENTS OF GRAPHS. , 2007, , .		0
326	Prediction of Protein Beta-Sheets: Dynamic Programming versus Grammatical Approach. Lecture Notes in Computer Science, 2008, , 66-77.	1.3	0
327	ANALYSIS AND PREDICTION OF NUTRITIONAL REQUIREMENTS USING STRUCTURAL PROPERTIES OF METABOLIC NETWORKS AND SUPPORT VECTOR MACHINES. , 2010, , .		0
328	A Quadsection Algorithm for Grammar-Based Image Compression. Lecture Notes in Computer Science, 2010, , 234-248.	1.3	0
329	A DYNAMIC PROGRAMMING ALGORITHM TO PREDICT SYNTHESIS PROCESSES OF TREE-STRUCTURED COMPOUNDS WITH GRAPH GRAMMAR. , 2010, , .		0
330	Finding Conserved Regions in Protein Structures Using Support Vector Machines and Structure Alignment. Lecture Notes in Computer Science, 2012, , 233-242.	1.3	0
331	On the Complexity of Finding a Largest Common Subtree of Bounded Degree. Lecture Notes in Computer Science, 2013, , 4-15.	1.3	0
332	Algorithms for Inferring Genetic Networks Seibutsu Butsuri, 1999, 39, 381-385.	0.1	0
333	Enumerating Naphthalene Isomers of Tree-like Chemical Graphs. , 2016, , .		0
334	Grammar-based Compression for Directed and Undirected Generalized Series-parallel Graphs using Integer Linear Programming. , 2018, , .		0
335	Domain-Based Approaches to Prediction and Analysis of Protein-Protein Interactions. , 2019, , 406-427.		0
336	Analysis of Boolean Networks and Boolean Models of Metabolic Networks. , 2019, , 141-158.		0
337	Finding Minimum Reaction Cuts of Metabolic Networks Under a Boolean Model Using Integer Programming and Feedback Vertex Sets. , 0, , 774-791.		0
338	機械å¦ç¿'QSARã®æ•´æ•°è¨ç"»æ³•ã«åŸºã¥ãé€†è§£æžæ³•. Journal of Computer Chemistry Japan, 2021, 20, 1	1 06.1 111.	0
339	A Method for Molecular Design Based on Linear Regression and Integer Programming. , 2022, , .		0
340	A new approach to the design of acyclic chemical compounds using skeleton trees and integer linear programming. Applied Intelligence, 0, , .	5.3	0