Ze Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2281102/publications.pdf Version: 2024-02-01

	687363	713466
461	13	21
citations	h-index	g-index
31	31	568
docs citations	times ranked	citing authors
	citations 31	46113citationsh-index3131

7E 7HANC

#	Article	IF	CITATIONS
1	Synthesis and property studies of <i>N</i> â€carboxymethyl chitosan. Journal of Applied Polymer Science, 2011, 119, 3282-3285.	2.6	46
2	Mechanochemical milling promoted solvent-free imino Diels–Alder reaction catalyzed by FeCl ₃ : diastereoselective synthesis of cis-2,4-diphenyl-1,2,3,4-tetrahydroquinolines. RSC Advances, 2014, 4, 35635-35638.	3.6	45
3	A simple and straightforward synthesis of phenyl isothiocyanates, symmetrical and unsymmetrical thioureas under ball milling. RSC Advances, 2013, 3, 16940-16944.	3.6	43
4	Highly efficient removal of copper ions from water using poly(acrylic acid)-grafted chitosan adsorbent. Colloid and Polymer Science, 2017, 295, 627-635.	2.1	38
5	Synthesis of cross-linking chitosan-PVA composite hydrogel and adsorption of Cu(II) ions. Water Science and Technology, 2020, 81, 1063-1070.	2.5	25
6	<pre>\$\$hbox {I}_{2}\$\$ I 2 -mediated amination/cyclization of ketones with 2-aminopyridines under high-speed ball milling: solvent- and metal-free synthesis of 2,3-substituted imidazo[1,2-a]pyridines and zolimidine. Molecular Diversity, 2016, 20, 659-666.</pre>	3.9	24
7	One-Pot Synthesis of 3,5-Diphenyl-1H-pyrazoles from Chalcones and Hydrazine under Mechanochemical Ball Milling. Heterocycles, 2014, 89, 103.	0.7	23
8	Adsorption of Cu(II) and Ni(II) using a Novel Xanthated Carboxymethyl Chitosan. Separation Science and Technology, 2014, 49, 1235-1243.	2.5	21
9	Straightforward Synthesis of 2-Anilinobenzoxazoles and -benzothiazoles via Mechanochemical Ball-milling-promoted One-pot Reactions. Chemistry Letters, 2015, 44, 440-441.	1.3	20
10	Manganese (III) acetate mediated synthesis of polysubstituted pyrroles under solvent-free ball milling. Tetrahedron Letters, 2017, 58, 674-678.	1.4	18
11	Convenient and efficient method for synthesis of 2,4,6-triarylpyridines using catalytic amount of PEG ₁₀₀₀ -based dicationic acidic ionic liquid under solvent-free conditions. Synthetic Communications, 2016, 46, 528-535.	2.1	15
12	Synthesis of polysubstituted quinolines through promoter-regulated selective annulation and C–C bond cleavage from 2-styrylanilines and β-keto esters. Organic Chemistry Frontiers, 2020, 7, 3368-3373.	4.5	15
13	Regiodivergent Synthesis of 4,5′- and 4,4′-Imidazolinyl Spiropyrazolones from 4-Alkylidene Pyrazolones and Amidines. Organic Letters, 2021, 23, 5305-5310.	4.6	15
14	I ₂ â€Promoted Condensation/Cyclization of Aryl Methyl Ketones with Anilines for Facile Synthesis of 1,2,4â€Triarylpyrroles. European Journal of Organic Chemistry, 2016, 2016, 925-929.	2.4	13
15	Enhanced antifouling and separation properties of Tr¶ger's base polymer ultrafiltration membrane via ring-opening modification. Journal of Membrane Science, 2020, 597, 117763.	8.2	13
16	PEG1000-Based Dicationic Acidic Ionic Liquid Catalyzed One-Pot Synthesis of 4-Aryl-3-Methyl-1-Phenyl-1H-Benzo[h]pyrazolo [3,4-b]quinoline-5,10-Diones via Multicomponent Reactions. Catalysts, 2015, 5, 1649-1656.	3.5	12
17	Chemoselective synthesis of 5,4 \hat{a} \in ² -imidazolinyl spirobarbiturates via NBS-promoted cyclization of unsaturated barbiturates and amidines. Organic and Biomolecular Chemistry, 2021, 19, 4978-4985.	2.8	12
18	PEG1000-Based Dicationic Acidic Ionic Liquid as an Efficient Catalyst for Mannich-Type Reaction in Water, Synthetic Communications, 2014, 44, 2529-2534.	2.1	10

ZE ZHANG

#	Article	IF	CITATIONS
19	Adsorption of lead using a novel xanthated carboxymethyl chitosan. Water Science and Technology, 2014, 69, 298-304.	2.5	9
20	Metal-Free SynthesisÂofÂ2,4,6-TrisubstitutedÂPyridines via Iodine-Initiated Reaction of Methyl Aryl Ketones with Amines under Neat Heating. Synthesis, 2017, 49, 1879-1883.	2.3	9
21	Facile synthesis of polysubstituted 2,3-dihydropyrroles and pyrroles from Mn(OAc)3-promoted oxidative cyclization of alkenes with amines/alkyne esters or enaminone esters. Tetrahedron Letters, 2018, 59, 1576-1580.	1.4	9
22	FeCl ₃ â€Mediated Oneâ€Pot Cyclization–Aromatization of Anilines, Benzaldehydes, and Phenylacetylenes under Ball Milling: A New Alternative for the Synthesis of 2,4â€Diphenylquinolines. Journal of the Chinese Chemical Society, 2018, 65, 65-73.	1.4	8
23	Facile solvothermal synthesis and photoconductivity of one-dimensional organic Cd(II)-Schiff-base nanoribbons. Frontiers of Optoelectronics in China, 2011, 4, 199-203.	0.2	5
24	Ruthenium carbene initiated ring-open metathesis polymerization of endo-bicyclo[3.2.0]hept-6-en-3-yl benzoates with tacticity studies. Chinese Journal of Polymer Science (English Edition), 2010, 28, 181-189.	3.8	3
25	AlCl3-Promoted Cyclization of β-Keto Derivatives with in situ Generated Enamines under Solvent-Free High Speed Ball Milling: An Efficient One-Pot Access to Polysubstituted 1,4-Dihydropyridines. Heterocycles, 2017, 94, 2054.	0.7	3
26	Unexpected Iodine-Promoted Aerobic Oxidation of α-Cyano-δ-keto Esters: A Facile Synthesis of α,δ-Dicarbonyl Esters. Synthesis, 2020, 52, 1841-1846.	2.3	2
27	Liquid-Assisted Mechanosynthesis of trans-2,3-Dihydropyrroles from Chalcones and Enaminones. Heterocycles, 2021, 102, 114.	0.7	2
28	N-Iodosuccinimide-Promoted Selective Construction of Cyclopropyl and Dihydrofuranyl Spirooxindoles from Alkylidene Oxindoles and Annular β-Dicarbonyl Compounds. Synthesis, 0, , .	2.3	2
29	Facile synthesis of 1-(arylimino)naphthalen-2($\langle i \rangle$ 1H $\langle i \rangle$)-ones from anilines and 2-naphthols promoted by NaBr/K/sub-2/sub-2/sub-2/sub-2/sub-2/sub-8/sub-2/Sub-2/sub-2	2.1	0