
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/228097/publications.pdf Version: 2024-02-01

VANCLU

#	Article	IF	CITATIONS
1	Global, regional, and national age–sex specific all-cause and cause-specific mortality for 240 causes of death, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet, The, 2015, 385, 117-171.	6.3	5,847
2	Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet, The, 2017, 390, 1211-1259.	6.3	5,578
3	Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet, The, 2016, 388, 1545-1602.	6.3	5,298
4	Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet, The, 2018, 392, 1736-1788.	6.3	4,989
5	Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet, The, 2016, 388, 1459-1544.	6.3	4,934
6	Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet, The, 2016, 388, 1659-1724.	6.3	4,203
7	Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the Global Burden of Diseases Study 2015. Lancet, The, 2017, 389, 1907-1918.	6.3	4,187
8	Global, regional, and national age-sex specific mortality for 264 causes of death, 1980–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet, The, 2017, 390, 1151-1210.	6.3	3,565
9	Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks in 188 countries, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet, The, 2015, 386, 2287-2323.	6.3	2,184
10	Global, regional, and national disability-adjusted life-years (DALYs) for 315 diseases and injuries and healthy life expectancy (HALE), 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet, The, 2016, 388, 1603-1658.	6.3	1,612
11	Global, regional, and national disability-adjusted life-years (DALYs) for 333 diseases and injuries and healthy life expectancy (HALE) for 195 countries and territories, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet, The, 2017, 390, 1260-1344.	6.3	1,589
12	Global, regional, and national disability-adjusted life years (DALYs) for 306 diseases and injuries and healthy life expectancy (HALE) for 188 countries, 1990–2013: quantifying the epidemiological transition. Lancet, The, 2015, 386, 2145-2191.	6.3	1,544
13	Global, regional, and national levels and causes of maternal mortality during 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet, The, 2014, 384, 980-1004.	6.3	1,230
14	Drivers of improved PM _{2.5} air quality in China from 2013 to 2017. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 24463-24469.	3.3	1,193
15	The 2020 report of The Lancet Countdown on health and climate change: responding to converging crises. Lancet, The, 2021, 397, 129-170.	6.3	1,030
16	The 2019 report of The Lancet Countdown on health and climate change: ensuring that the health of a child born today is not defined by a changing climate. Lancet, The, 2019, 394, 1836-1878.	6.3	905
17	Ambient Air Pollution Exposure Estimation for the Global Burden of Disease 2013. Environmental Science & Technology, 2016, 50, 79-88.	4.6	886
18	Global, regional, and national incidence and mortality for HIV, tuberculosis, and malaria during 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet, The, 2014, 384, 1005-1070.	6.3	786

#	Article	IF	CITATIONS
19	Satellite-Based Spatiotemporal Trends in PM _{2.5} Concentrations: China, 2004–2013. Environmental Health Perspectives, 2016, 124, 184-192.	2.8	565
20	Estimating Ground-Level PM _{2.5} in China Using Satellite Remote Sensing. Environmental Science & Technology, 2014, 48, 7436-7444.	4.6	480
21	Healthcare Access and Quality Index based on mortality from causes amenable to personal health care in 195 countries and territories, 1990–2015: a novel analysis from the Global Burden of Disease Study 2015. Lancet, The, 2017, 390, 231-266.	6.3	480
22	Measuring the health-related Sustainable Development Goals in 188 countries: a baseline analysis from the Global Burden of Disease Study 2015. Lancet, The, 2016, 388, 1813-1850.	6.3	413
23	Estimating Ground-Level PM2.5in the Eastern United States Using Satellite Remote Sensing. Environmental Science & Technology, 2005, 39, 3269-3278.	4.6	404
24	Estimating PM _{2.5} Concentrations in the Conterminous United States Using the Random Forest Approach. Environmental Science & Technology, 2017, 51, 6936-6944.	4.6	404
25	Estimating Regional Spatial and Temporal Variability of PM _{2.5} Concentrations Using Satellite Data, Meteorology, and Land Use Information. Environmental Health Perspectives, 2009, 117, 886-892.	2.8	388
26	Measuring progress from 1990 to 2017 and projecting attainment to 2030 of the health-related Sustainable Development Goals for 195 countries and territories: a systematic analysis for the Global Burden of Disease Study 2017. Lancet, The, 2018, 392, 2091-2138.	6.3	335
27	A novel calibration approach of MODIS AOD data to predict PM _{2.5} concentrations. Atmospheric Chemistry and Physics, 2011, 11, 7991-8002.	1.9	329
28	Emissions estimation from satellite retrievals: A review of current capability. Atmospheric Environment, 2013, 77, 1011-1042.	1.9	323
29	Estimating ground-level PM2.5 concentrations in the southeastern U.S. using geographically weighted regression. Environmental Research, 2013, 121, 1-10.	3.7	283
30	Estimating ground-level PM2.5 concentrations in the Southeastern United States using MAIAC AOD retrievals and a two-stage model. Remote Sensing of Environment, 2014, 140, 220-232.	4.6	274
31	Using aerosol optical thickness to predict ground-level PM2.5 concentrations in the St. Louis area: A comparison between MISR and MODIS. Remote Sensing of Environment, 2007, 107, 33-44.	4.6	271
32	Full-coverage high-resolution daily PM2.5 estimation using MAIAC AOD in the Yangtze River Delta of China. Remote Sensing of Environment, 2017, 199, 437-446.	4.6	239
33	Spatial and temporal trends in the mortality burden of air pollution in China: 2004–2012. Environment International, 2017, 98, 75-81.	4.8	239
34	An Ensemble Machine-Learning Model To Predict Historical PM _{2.5} Concentrations in China from Satellite Data. Environmental Science & Technology, 2018, 52, 13260-13269.	4.6	215
35	Human Exposure Pathways of Heavy Metals in a Lead-Zinc Mining Area, Jiangsu Province, China. PLoS ONE, 2012, 7, e46793.	1.1	206
36	All-cause mortality risk associated with long-term exposure to ambient PM2·5 in China: a cohort study. Lancet Public Health, The, 2018, 3, e470-e477.	4.7	187

#	Article	IF	CITATIONS
37	Satellite data of atmospheric pollution for U.S. air quality applications: Examples of applications, summary of data end-user resources, answers to FAQs, and common mistakes to avoid. Atmospheric Environment, 2014, 94, 647-662.	1.9	186
38	Urban Air Pollution May Enhance COVID-19 Case-Fatality and Mortality Rates in the United States. Innovation(China), 2020, 1, 100047.	5.2	177
39	Global Land Use Regression Model for Nitrogen Dioxide Air Pollution. Environmental Science & Technology, 2017, 51, 6957-6964.	4.6	174
40	Effect of the Fukushima nuclear accident on the risk perception of residents near a nuclear power plant in China. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 19742-19747.	3.3	168
41	Mapping annual mean ground-level PM2.5concentrations using Multiangle Imaging Spectroradiometer aerosol optical thickness over the contiguous United States. Journal of Geophysical Research, 2004, 109, n/a-n/a.	3.3	165
42	Long-Term Exposure to Fine Particulate Matter and Cardiovascular Disease inÂChina. Journal of the American College of Cardiology, 2020, 75, 707-717.	1.2	164
43	Estimating ground-level PM2.5 concentrations over three megalopolises in China using satellite-derived aerosol optical depth measurements. Atmospheric Environment, 2016, 124, 232-242.	1.9	163
44	Polycyclic aromatic hydrocarbon and its effects on human health: An overeview. Chemosphere, 2022, 296, 133948.	4.2	158
45	Effects of air pollution control policies on PM _{2.5} pollution improvement in China from 2005 to 2017: a satellite-based perspective. Atmospheric Chemistry and Physics, 2019, 19, 6861-6877.	1.9	157
46	Data Integration for the Assessment of Population Exposure to Ambient Air Pollution for Global Burden of Disease Assessment. Environmental Science & Technology, 2018, 52, 9069-9078.	4.6	154
47	Projected changes of extreme weather events in the eastern United States based on a high resolution climate modeling system. Environmental Research Letters, 2012, 7, 044025.	2.2	148
48	Predicting monthly high-resolution PM2.5 concentrations with random forest model in the North China Plain. Environmental Pollution, 2018, 242, 675-683.	3.7	146
49	Associations between long-term exposure to ambient particulate air pollution and type 2 diabetes prevalence, blood glucose and glycosylated hemoglobin levels in China. Environment International, 2016, 92-93, 416-421.	4.8	142
50	Pathways of China's PM2.5 air quality 2015–2060 in the context of carbon neutrality. National Science Review, 2021, 8, nwab078.	4.6	142
51	Spatiotemporal Associations between GOES Aerosol Optical Depth Retrievals and Ground-Level PM _{2.5} . Environmental Science & Technology, 2008, 42, 5800-5806.	4.6	139
52	Recent Changes in Particulate Air Pollution over China Observed from Space and the Ground: Effectiveness of Emission Control. Environmental Science & Technology, 2010, 44, 7771-7776.	4.6	128
53	Smog episodes, fine particulate pollution and mortality in China. Environmental Research, 2015, 136, 396-404.	3.7	128
54	Satellite-derived high resolution PM2.5 concentrations in Yangtze River Delta Region of China using improved linear mixed effects model. Atmospheric Environment, 2016, 133, 156-164.	1.9	127

#	Article	IF	CITATIONS
55	Long term exposure to ambient fine particulate matter and incidence of stroke: prospective cohort study from the China-PAR project. BMJ, The, 2019, 367, 16720.	3.0	127
56	Variation in global chemical composition of PM _{2.5} : emerging results from SPARTAN. Atmospheric Chemistry and Physics, 2016, 16, 9629-9653.	1.9	123
57	Spatiotemporal distributions of surface ozone levels in China from 2005 to 2017: A machine learning approach. Environment International, 2020, 142, 105823.	4.8	122
58	Changes in spatial patterns of PM2.5 pollution in China 2000–2018: Impact of clean air policies. Environment International, 2020, 141, 105776.	4.8	118
59	Dynamic projection of anthropogenic emissions in China: methodology and 2015–2050 emission pathways under a range of socio-economic, climate policy, and pollution control scenarios. Atmospheric Chemistry and Physics, 2020, 20, 5729-5757.	1.9	117
60	The association of wildfire smoke with respiratory and cardiovascular emergency department visits in Colorado in 2012: a case crossover study. Environmental Health, 2016, 15, 64.	1.7	114
61	Inequality of household consumption and air pollution-related deaths in China. Nature Communications, 2019, 10, 4337.	5.8	114
62	Incorporating Low-Cost Sensor Measurements into High-Resolution PM _{2.5} Modeling at a Large Spatial Scale. Environmental Science & Technology, 2020, 54, 2152-2162.	4.6	114
63	A land use regression model for estimating the NO2 concentration in shanghai, China. Environmental Research, 2015, 137, 308-315.	3.7	113
64	Data Integration Model for Air Quality: A Hierarchical Approach to the Global Estimation of Exposures to Ambient Air Pollution. Journal of the Royal Statistical Society Series C: Applied Statistics, 2018, 67, 231-253.	0.5	112
65	The impact of power generation emissions on ambient PM2.5 pollution and human health in China and India. Environment International, 2018, 121, 250-259.	4.8	111
66	Evaluation of VIIRS, GOCI, and MODIS Collection 6†AOD retrievals against ground sunphotometer observations over East Asia. Atmospheric Chemistry and Physics, 2016, 16, 1255-1269.	1.9	110
67	Estimating mortality burden attributable to short-term PM2.5 exposure: A national observational study in China. Environment International, 2019, 125, 245-251.	4.8	110
68	The impact of emission and climate change on ozone in the United States under representative concentration pathways (RCPs). Atmospheric Chemistry and Physics, 2013, 13, 9607-9621.	1.9	108
69	10-year spatial and temporal trends of PM _{2.5} concentrations in the southeastern US estimated using high-resolution satellite data. Atmospheric Chemistry and Physics, 2014, 14, 6301-6314.	1.9	106
70	Impact of China's Air Pollution Prevention and Control Action Plan on PM2.5 chemical composition over eastern China. Science China Earth Sciences, 2019, 62, 1872-1884.	2.3	105
71	Associations between ambient fine particulate air pollution and hypertension: A nationwide cross-sectional study in China. Science of the Total Environment, 2017, 584-585, 869-874.	3.9	104
72	Acute effects of air pollution on influenza-like illness in Nanjing, China: A population-based study. Chemosphere, 2016, 147, 180-187.	4.2	103

#	Article	IF	CITATIONS
73	Estimation and Uncertainty Analysis of Impacts of Future Heat Waves on Mortality in the Eastern United States. Environmental Health Perspectives, 2014, 122, 10-16.	2.8	101
74	The Impact of Winter Heating on Air Pollution in China. PLoS ONE, 2015, 10, e0117311.	1.1	101
75	Age-Specific Associations of Ozone and Fine Particulate Matter with Respiratory Emergency Department Visits in the United States. American Journal of Respiratory and Critical Care Medicine, 2019, 199, 882-890.	2.5	96
76	Limitations of Remotely Sensed Aerosol as a Spatial Proxy for Fine Particulate Matter. Environmental Health Perspectives, 2009, 117, 904-909.	2.8	95
77	Associations of wildfire smoke PM2.5 exposure with cardiorespiratory events in Colorado 2011–2014. Environment International, 2019, 133, 105151.	4.8	94
78	Estimating Fine Particulate Matter Component Concentrations and Size Distributions Using Satellite-Retrieved Fractional Aerosol Optical Depth: Part 2—A Case Study. Journal of the Air and Waste Management Association, 2007, 57, 1360-1369.	0.9	91
79	Estimating Fine Particulate Matter Component Concentrations and Size Distributions Using Satellite-Retrieved Fractional Aerosol Optical Depth: Part 1— Method Development. Journal of the Air and Waste Management Association, 2007, 57, 1351-1359.	0.9	90
80	Long-Term Exposure to Fine Particulate Matter and Hypertension Incidence in China. Hypertension, 2019, 73, 1195-1201.	1.3	88
81	The 17-y spatiotemporal trend of PM _{2.5} and its mortality burden in China. Proceedings of the United States of America, 2020, 117, 25601-25608.	3.3	83
82	Urbanization Level and Vulnerability to Heat-Related Mortality in Jiangsu Province, China. Environmental Health Perspectives, 2016, 124, 1863-1869.	2.8	81
83	Estimating PM2.5 concentration of the conterminous United States via interpretable convolutional neural networks. Environmental Pollution, 2020, 256, 113395.	3.7	79
84	Advances in multiangle satellite remote sensing of speciated airborne particulate matter and association with adverse health effects: from MISR to MAIA. Journal of Applied Remote Sensing, 2018, 12, 1.	0.6	79
85	MAIAC-based long-term spatiotemporal trends of PM2.5 in Beijing, China. Science of the Total Environment, 2018, 616-617, 1589-1598.	3.9	78
86	Emissions and health impacts from global shipping embodied in US–China bilateral trade. Nature Sustainability, 2019, 2, 1027-1033.	11.5	78
87	Impacts of snow and cloud covers on satellite-derived PM2.5 levels. Remote Sensing of Environment, 2019, 221, 665-674.	4.6	78
88	Long-term exposure to ambient fine particulate matter and incidence of diabetes in China: A cohort study. Environment International, 2019, 126, 568-575.	4.8	76
89	Estimating ground-level PM 10 in a Chinese city by combining satellite data, meteorological information and a land use regression model. Environmental Pollution, 2016, 208, 177-184.	3.7	75
90	Maternal exposure to traffic-related air pollution and birth defects in Massachusetts. Environmental Research, 2016, 146, 1-9.	3.7	74

#	Article	IF	CITATIONS
91	An overview of mesoscale aerosol processes, comparisons, and validation studies from DRAGON networks. Atmospheric Chemistry and Physics, 2018, 18, 655-671.	1.9	72
92	SPARTAN: a global network to evaluate and enhance satellite-based estimates of ground-level particulate matter for global health applications. Atmospheric Measurement Techniques, 2015, 8, 505-521.	1.2	71
93	A comparison of individual exposure, perception, and acceptable levels of PM 2.5 with air pollution policy objectives in China. Environmental Research, 2017, 157, 78-86.	3.7	70
94	Validation of Multiangle Imaging Spectroradiometer (MISR) aerosol optical thickness measurements using Aerosol Robotic Network (AERONET) observations over the contiguous United States. Journal of Geophysical Research, 2004, 109, n/a-n/a.	3.3	68
95	Comparison of MISR aerosol optical thickness with AERONET measurements in Beijing metropolitan area. Remote Sensing of Environment, 2007, 107, 45-53.	4.6	68
96	A statistical model to evaluate the effectiveness of PM2.5 emissions control during the Beijing 2008 Olympic Games. Environment International, 2012, 44, 100-105.	4.8	68
97	Global Sources of Fine Particulate Matter: Interpretation of PM _{2.5} Chemical Composition Observed by SPARTAN using a Global Chemical Transport Model. Environmental Science & Technology, 2018, 52, 11670-11681.	4.6	68
98	Long-term exposure to nitrogen dioxide and mortality: A systematic review and meta-analysis. Science of the Total Environment, 2021, 776, 145968.	3.9	67
99	The Regional Impacts of Cooking and Heating Emissions on Ambient Air Quality and Disease Burden in China. Environmental Science & Technology, 2016, 50, 9416-9423.	4.6	66
100	Pediatric emergency department visits and ambient Air pollution in the U.S. State of Georgia: a case-crossover study. Environmental Health, 2016, 15, 115.	1.7	66
101	Associations between birth outcomes and maternal PM2.5 exposure in Shanghai: A comparison of three exposure assessment approaches. Environment International, 2018, 117, 226-236.	4.8	66
102	Estimating PM2.5 concentrations in Northeastern China with full spatiotemporal coverage, 2005–2016. Remote Sensing of Environment, 2021, 253, 112203.	4.6	66
103	Pediatric Emergency Visits and Short-Term Changes in PM _{2.5} Concentrations in the U.S. State of Georgia. Environmental Health Perspectives, 2016, 124, 690-696.	2.8	64
104	An improved algorithm for small and cool fire detection using MODIS data: A preliminary study in the southeastern United States. Remote Sensing of Environment, 2007, 108, 163-170.	4.6	62
105	Estimating ground-level PM _{2.5} in eastern China using aerosol optical depth determined from the GOCI satellite instrument. Atmospheric Chemistry and Physics, 2015, 15, 13133-13144.	1.9	61
106	Critical windows for maternal fine particulate matter exposure and adverse birth outcomes: The Shanghai birth cohort study. Chemosphere, 2020, 240, 124904.	4.2	61
107	Non-Negligible Stack Emissions of Noncriteria Air Pollutants from Coal-Fired Power Plants in China: Condensable Particulate Matter and Sulfur Trioxide. Environmental Science & Technology, 2020, 54, 6540-6550.	4.6	61
108	Ammonium-treated birnessite-type MnO2 to increase oxygen vacancies and surface acidity for stably decomposing ozone in humid condition. Applied Surface Science, 2019, 495, 143607.	3.1	60

#	Article	IF	CITATIONS
109	Aqueous phase processing of secondary organic aerosol from isoprene photooxidation. Atmospheric Chemistry and Physics, 2012, 12, 5879-5895.	1.9	59
110	Calibrating MODIS aerosol optical depth for predicting daily PM2.5 concentrations via statistical downscaling. Journal of Exposure Science and Environmental Epidemiology, 2014, 24, 398-404.	1.8	59
111	Association of Estimated Long-term Exposure to Air Pollution and Traffic Proximity With a Marker for Coronary Atherosclerosis in a Nationwide Study in China. JAMA Network Open, 2019, 2, e196553.	2.8	58
112	Statistical data fusion of multi-sensor AOD over the Continental United States. Geocarto International, 2014, 29, 48-64.	1.7	56
113	Long-Term Exposure to Ambient PM2.5 and Increased Risk of CKD Prevalence in China. Journal of the American Society of Nephrology: JASN, 2021, 32, 448-458.	3.0	56
114	Air quality modeling with WRF-Chem v3.5 in East Asia: sensitivity to emissions and evaluation of simulated air quality. Geoscientific Model Development, 2016, 9, 1201-1218.	1.3	55
115	Space-time trends of PM2.5 constituents in the conterminous United States estimated by a machine learning approach, 2005–2015. Environment International, 2018, 121, 1137-1147.	4.8	55
116	Calibration of low-cost PurpleAir outdoor monitors using an improved method of calculating PM. Atmospheric Environment, 2021, 256, 118432.	1.9	54
117	The nexus between urbanization and PM2.5 related mortality in China. Environmental Pollution, 2017, 227, 15-23.	3.7	52
118	The impact of climate change and emissions control on future ozone levels: Implications for human health. Environment International, 2017, 108, 41-50.	4.8	52
119	Analysis of the impact of the forest fires in August 2007 on air quality of Athens using multi-sensor aerosol remote sensing data, meteorology and surface observations. Atmospheric Environment, 2009, 43, 3310-3318.	1.9	50
120	Urban heat island intensity and spatial variability by synoptic weather type in the northeast U.S Urban Climate, 2018, 24, 747-762.	2.4	50
121	Joint retrieval of the aerosol fine mode fraction and optical depth using MODIS spectral reflectance over northern and eastern China: Artificial neural network method. Remote Sensing of Environment, 2020, 249, 112006.	4.6	48
122	Satellite-based short- and long-term exposure to PM2.5 and adult mortality in urban Beijing, China. Environmental Pollution, 2018, 242, 492-499.	3.7	47
123	A review of statistical methods used for developing large-scale and long-term PM2.5 models from satellite data. Remote Sensing of Environment, 2022, 269, 112827.	4.6	47
124	Piezoelectric Nanofiber Membrane for Reusable, Stable, and Highly Functional Face Mask Filter with Longâ€Term Biodegradability. Advanced Functional Materials, 2022, 32, .	7.8	46
125	Variability of wildland fire emissions across the contiguous United States. Atmospheric Environment, 2004, 38, 3489-3499.	1.9	45
126	Ambient air pollution and adverse birth outcomes: a natural experiment study. Population Health Metrics, 2015, 13, 17.	1.3	45

#	Article	IF	CITATIONS
127	Long-Term Effects of High Exposure to Ambient Fine Particulate Matter on Coronary Heart Disease Incidence: A Population-Based Chinese Cohort Study. Environmental Science & Technology, 2020, 54, 6812-6821.	4.6	45
128	Associations of long-term exposure to ambient PM2.5 with mortality in Chinese adults: A pooled analysis of cohorts in the China-PAR project. Environment International, 2020, 138, 105589.	4.8	45
129	Acute health impacts of airborne particles estimated from satellite remote sensing. Environment International, 2013, 51, 150-159.	4.8	44
130	Contribution of low-cost sensor measurements to the prediction of PM2.5 levels: A case study in Imperial County, California, USA. Environmental Research, 2020, 180, 108810.	3.7	44
131	Retrieval of the Haze Optical Thickness in North China Plain Using MODIS Data. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51, 2528-2540.	2.7	43
132	A machine learning model to estimate ground-level ozone concentrations in California using TROPOMI data and high-resolution meteorology. Environment International, 2022, 158, 106917.	4.8	43
133	Maternal exposure to ozone and PM2.5 and the prevalence of orofacial clefts in four U.S. states. Environmental Research, 2017, 153, 35-40.	3.7	42
134	Impact of temperature on childhood pneumonia estimated from satellite remote sensing. Environmental Research, 2014, 132, 334-341.	3.7	41
135	Assessment of the temperature effect on childhood diarrhea using satellite imagery. Scientific Reports, 2014, 4, 5389.	1.6	41
136	Review: Strategies for using satellite-based products in modeling PM2.5 and short-term pollution episodes. Environment International, 2020, 144, 106057.	4.8	40
137	Chronic Effects of High Fine Particulate Matter Exposure on Lung Cancer in China. American Journal of Respiratory and Critical Care Medicine, 2020, 202, 1551-1559.	2.5	40
138	Multi-Angle Imager for Aerosols. Public Health Reports, 2017, 132, 14-17.	1.3	38
139	Estimating PM2.5 speciation concentrations using prototype 4.4†km-resolution MISR aerosol properties over Southern California. Atmospheric Environment, 2018, 181, 70-81.	1.9	38
140	The effect of aerosol vertical profiles on satellite-estimated surface particle sulfate concentrations. Remote Sensing of Environment, 2011, 115, 508-513.	4.6	37
141	Random forest models for PM _{2.5} speciation concentrations using MISR fractional AODs. Environmental Research Letters, 2020, 15, 034056.	2.2	37
142	The changing risk perception towards nuclear power in China after the Fukushima nuclear accident in Japan. Energy Policy, 2018, 120, 294-301.	4.2	36
143	Satelliteâ€Based Daily PM _{2.5} Estimates During Fire Seasons in Colorado. Journal of Geophysical Research D: Atmospheres, 2018, 123, 8159-8171.	1.2	36
144	Developing an Advanced PM2.5 Exposure Model in Lima, Peru. Remote Sensing, 2019, 11, 641.	1.8	36

#	Article	IF	CITATIONS
145	Improving satellite-based PM2.5 estimates in China using Gaussian processes modeling in a Bayesian hierarchical setting. Scientific Reports, 2017, 7, 7048.	1.6	35
146	Characterizing outdoor infiltration and indoor contribution of PM2.5 with citizen-based low-cost monitoring data. Environmental Pollution, 2021, 276, 116763.	3.7	35
147	Evaluation of a data fusion approach to estimate daily PM2.5 levels in North China. Environmental Research, 2017, 158, 54-60.	3.7	34
148	Assessing the spatial and temporal variability of fine particulate matter components in Israeli, Jordanian, and Palestinian cities. Atmospheric Environment, 2010, 44, 2383-2392.	1.9	33
149	Long-term exposure to PM2.5 major components and mortality in the southeastern United States. Environment International, 2022, 158, 106969.	4.8	33
150	Inter-comparison of model-simulated and satellite-retrieved componential aerosol optical depths in China. Atmospheric Environment, 2016, 141, 320-332.	1.9	32
151	Cohort profile: China National Human Biomonitoring (CNHBM)—A nationally representative, prospective cohort in Chinese population. Environment International, 2021, 146, 106252.	4.8	32
152	Evaluation of Aqua MODIS Collection 6 AOD Parameters for Air Quality Research over the Continental United States. Remote Sensing, 2016, 8, 815.	1.8	31
153	A Bayesian ensemble approach to combine PM2.5 estimates from statistical models using satellite imagery and numerical model simulation. Environmental Research, 2019, 178, 108601.	3.7	31
154	Estimating daily PM2.5 concentrations in New York City at the neighborhood-scale: Implications for integrating non-regulatory measurements. Science of the Total Environment, 2019, 697, 134094.	3.9	31
155	Machine Learning-Based Integration of High-Resolution Wildfire Smoke Simulations and Observations for Regional Health Impact Assessment. International Journal of Environmental Research and Public Health, 2019, 16, 2137.	1.2	31
156	Human biomonitoring of toxic and essential metals in younger elderly, octogenarians, nonagenarians and centenarians: Analysis of the Healthy Ageing and Biomarkers Cohort Study (HABCS) in China. Environment International, 2021, 156, 106717.	4.8	31
157	Improving satelliteâ€driven PM _{2.5} models with Moderate Resolution Imaging Spectroradiometer fire counts in the southeastern U.S Journal of Geophysical Research D: Atmospheres, 2014, 119, 11375-11386.	1.2	30
158	Improving satellite-retrieved aerosol microphysical properties using GOCART data. Atmospheric Measurement Techniques, 2015, 8, 1157-1171.	1.2	30
159	Comparison of multiple PM _{2.5} exposure products for estimating health benefits of emission controls over New York State, USA. Environmental Research Letters, 2019, 14, 084023.	2.2	30
160	Association between maternal exposure to particulate matter (PM2.5) and adverse pregnancy outcomes in Lima, Peru. Journal of Exposure Science and Environmental Epidemiology, 2020, 30, 689-697.	1.8	30
161	Attribution of aerosol direct radiative forcing in China and India to emitting sectors. Atmospheric Environment, 2018, 190, 35-42.	1.9	29
162	Long-term exposure to PM2.5 and incidence of disability in activities of daily living among oldest old. Environmental Pollution, 2020, 259, 113910.	3.7	29

#	Article	IF	CITATIONS
163	New Directions: Satellite driven PM2.5 exposure models to support targeted particle pollution health effects research. Atmospheric Environment, 2013, 68, 52-53.	1.9	28
164	Satellite-based estimation of hourly PM2.5 levels during heavy winter pollution episodes in the Yangtze River Delta, China. Chemosphere, 2020, 239, 124678.	4.2	28
165	Long-term exposure to ambient PM2.5 and stroke mortality among urban residents in northern China. Ecotoxicology and Environmental Safety, 2021, 213, 112063.	2.9	28
166	Comparison of GEOSâ€Chem aerosol optical depth with AERONET and MISR data over the contiguous United States. Journal of Geophysical Research D: Atmospheres, 2013, 118, 11,228.	1.2	27
167	Increased Outdoor PM _{2.5} Concentration Is Associated with Moderate/Severe Anemia in Children Aged 6–59 Months in Lima, Peru. Journal of Environmental and Public Health, 2019, 2019, 1-8.	0.4	27
168	Relationship betweentemporal distribution of air pollution exposure and glucose homeostasis during pregnancy. Environmental Research, 2020, 185, 109456.	3.7	27
169	The impacts of comprehensive urbanization on PM2.5 concentrations in the Yangtze River Delta, China. Ecological Indicators, 2021, 132, 108337.	2.6	27
170	Decline in bulk deposition of air pollutants in China lags behind reductions in emissions. Nature Geoscience, 2022, 15, 190-195.	5.4	27
171	Estimating Particle Sulfate Concentrations Using MISR Retrieved Aerosol Properties. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2009, 2, 176-184.	2.3	26
172	Exposure to acute air pollution and risk of bronchiolitis and otitis media for preterm and term infants. Journal of Exposure Science and Environmental Epidemiology, 2018, 28, 348-357.	1.8	26
173	Early-life exposure to PM2.5 and risk of acute asthma clinical encounters among children in Massachusetts: a case-crossover analysis. Environmental Health, 2018, 17, 20.	1.7	26
174	The sensitivity of satellite-based PM2.5 estimates to its inputs: Implications to model development in data-poor regions. Environment International, 2018, 121, 550-560.	4.8	26
175	Relationship Between Polycyclic Aromatic Hydrocarbons and Cardiovascular Diseases: A Systematic Review. Frontiers in Public Health, 2021, 9, 763706.	1.3	26
176	Long-Term Exposure to Low-Level NO2 and Mortality among the Elderly Population in the Southeastern United States. Environmental Health Perspectives, 2021, 129, 127009.	2.8	26
177	Air Pollution Monitoring for Health Research and Patient Care. An Official American Thoracic Society Workshop Report. Annals of the American Thoracic Society, 2019, 16, 1207-1214.	1.5	25
178	Using Satellites to Track Indicators of Global Air Pollution and Climate Change Impacts: Lessons Learned From a NASAâ€Supported Scienceâ€Stakeholder Collaborative. GeoHealth, 2020, 4, e2020GH000270.	1.9	25
179	The long-term trend of PM2.5-related mortality in China: The effects of source data selection. Chemosphere, 2021, 263, 127894.	4.2	25
180	Satellite Monitoring for Air Quality and Health. Annual Review of Biomedical Data Science, 2021, 4, 417-447.	2.8	25

#	Article	IF	CITATIONS
181	Delays in reducing waterborne and water-related infectious diseases in China under climate change. Nature Climate Change, 2014, 4, 1109-1115.	8.1	24
182	An empirical method of RH correction for satellite estimation of ground-level PM concentrations. Atmospheric Environment, 2014, 95, 71-81.	1.9	24
183	Spatially resolved estimation of ozone-related mortality in the United States under two representative concentration pathways (RCPs) and their uncertainty. Climatic Change, 2015, 128, 71-84.	1.7	24
184	Air pollutant exposure field modeling using air quality model-data fusion methods and comparison with satellite AOD-derived fields: application over North Carolina, USA. Air Quality, Atmosphere and Health, 2018, 11, 11-22.	1.5	22
185	Time-series analysis of ambient PM2.5 and cardiorespiratory emergency room visits in Lima, Peru during 2010–2016. Journal of Exposure Science and Environmental Epidemiology, 2020, 30, 680-688.	1.8	22
186	Space-borne and ground observations of the characteristics of CO pollution in Beijing, 2000–2010. Atmospheric Environment, 2011, 45, 2367-2372.	1.9	21
187	The Time Trend Temperature–Mortality as a Factor of Uncertainty Analysis of Impacts of Future Heat Waves: Wu et al. Respond. Environmental Health Perspectives, 2014, 122, A118-9.	2.8	21
188	Associations of PM2.5 and Black Carbon with Hospital Emergency Room Visits during Heavy Haze Events: A Case Study in Beijing, China. International Journal of Environmental Research and Public Health, 2017, 14, 725.	1.2	21
189	On the accuracy and potential of Google Maps location history data to characterize individual mobility for air pollution health studies. Environmental Pollution, 2019, 252, 924-930.	3.7	21
190	Review of the applications of Multiangle Imaging SpectroRadiometer to air quality research. Science in China Series D: Earth Sciences, 2009, 52, 132-144.	0.9	20
191	Addressing the source contribution of PM _{2.5} on mortality: an evaluation study of its impacts on excess mortality in China. Environmental Research Letters, 2017, 12, 104016.	2.2	20
192	County-level variation in the long-term association between PM2.5 and lung cancer mortality in China. Science of the Total Environment, 2020, 738, 140195.	3.9	20
193	Examining PM2.5 concentrations and exposure using multiple models. Environmental Research, 2021, 196, 110432.	3.7	20
194	Satellite and Ground Observations of Severe Air Pollution Episodes in the Winter of 2013 in Beijing, China. Aerosol and Air Quality Research, 2016, 16, 977-989.	0.9	19
195	Combining Machine Learning and Numerical Simulation for High-Resolution PM _{2.5} Concentration Forecast. Environmental Science & Technology, 2022, 56, 1544-1556.	4.6	19
196	Projections for temperature-related years of life lost from cardiovascular diseases in the elderly in a Chinese city with typical subtropical climate. Environmental Research, 2018, 167, 614-621.	3.7	18
197	Exposure to respirable and fine dust particle over North-Central India: chemical characterization, source interpretation, and health risk analysis. Environmental Geochemistry and Health, 2020, 42, 2081-2099.	1.8	18
198	Satellite-based assessment of the long-term efficacy of PM2.5 pollution control policies across the Taiwan Strait. Remote Sensing of Environment, 2020, 251, 112067.	4.6	18

#	Article	IF	CITATIONS
199	Mitigating air pollution strategies based on solar chimneys. Solar Energy, 2021, 218, 11-27.	2.9	18
200	Imputing Satellite-Derived Aerosol Optical Depth Using a Multi-Resolution Spatial Model and Random Forest for PM2.5 Prediction. Remote Sensing, 2021, 13, 126.	1.8	18
201	The impact of three recent coal-fired power plant closings on Pittsburgh air quality: A natural experiment. Journal of the Air and Waste Management Association, 2017, 67, 3-16.	0.9	17
202	Toxicological Risk by Inhalation Exposure of Air Pollution Emitted from China's Municipal Solid Waste Incineration. Environmental Science & Technology, 2018, 52, 11490-11499.	4.6	17
203	Compilation and spatio-temporal analysis of publicly available total solar and UV irradiance data in the contiguous United States. Environmental Pollution, 2019, 253, 130-140.	3.7	17
204	Large global variations in measured airborne metal concentrations driven by anthropogenic sources. Scientific Reports, 2020, 10, 21817.	1.6	17
205	Risk perception of heat waves and its spatial variation in Nanjing, China. International Journal of Biometeorology, 2018, 62, 783-794.	1.3	16
206	Temporal changes in short-term associations between cardiorespiratory emergency department visits and PM2.5 in Los Angeles, 2005 to 2016. Environmental Research, 2020, 190, 109967.	3.7	16
207	The association between long-term exposure to ambient fine particulate matter and glaucoma: A nation-wide epidemiological study among Chinese adults. International Journal of Hygiene and Environmental Health, 2021, 238, 113858.	2.1	16
208	Major Factors Influencing the Health Impacts from Controlling Air Pollutants with Nonlinear Chemistry: An Application to China. Risk Analysis, 2014, 34, 683-697.	1.5	15
209	The Potential Impact of Satellite-Retrieved Cloud Parameters on Ground-Level PM2.5 Mass and Composition. International Journal of Environmental Research and Public Health, 2017, 14, 1244.	1.2	15
210	Climate research priorities for policy-makers, practitioners, and scientists in Georgia, USA. Environmental Management, 2018, 62, 190-209.	1.2	15
211	Surface erythemal UVÂirradiance in the continental United States derived from ground-based and OMI observations: quality assessment, trend analysis and sampling issues. Atmospheric Chemistry and Physics, 2019, 19, 2165-2181.	1.9	15
212	A machine learning model to estimate ambient PM2.5 concentrations in industrialized highveld region of South Africa. Remote Sensing of Environment, 2021, 266, 112713.	4.6	15
213	Predicting gestational personal exposure to PM2.5 from satellite-driven ambient concentrations in Shanghai. Chemosphere, 2019, 233, 452-461.	4.2	14
214	Preventing secondary exposure to women from men applying a novel nestorone/testosterone contraceptive gel. Andrology, 2019, 7, 235-243.	1.9	14
215	Modified regional biogenic VOC emissions with actual ozone stress and integrated land cover information: A case study in Yangtze River Delta, China. Science of the Total Environment, 2020, 727, 138703.	3.9	14
216	<p>Geographical Disparity and Associated Factors of COPD Prevalence in China: A Spatial Analysis of National Cross-Sectional Study</p> . International Journal of COPD, 2020, Volume 15, 367-377.	0.9	14

#	Article	IF	CITATIONS
217	The association between ozone and years of life lost from stroke, 2013–2017: A retrospective regression analysis in 48 major Chinese cities. Journal of Hazardous Materials, 2021, 405, 124220.	6.5	14
218	Long-term impacts of ambient fine particulate matter exposure on overweight or obesity in Chinese adults: The China-PAR project. Environmental Research, 2021, 201, 111611.	3.7	14
219	Chronic PM2.5 exposure and risk of infant bronchiolitis and otitis media clinical encounters. International Journal of Hygiene and Environmental Health, 2017, 220, 1055-1063.	2.1	13
220	Estimating PM _{2.5} in Southern California using satellite data: factors that affect model performance. Environmental Research Letters, 2020, 15, 094004.	2.2	13
221	Modeling Study of the Particulate Matter in Lima with the WRF-Chem Model: Case Study of April 2016. International Journal of Applied Engineering Research: IJAER, 2018, 13, 10129.	0.3	13
222	Nonlinear effect of air pollution on adult pneumonia hospital visits in the coastal city of Qingdao, China: A time-series analysis. Environmental Research, 2022, 209, 112754.	3.7	13
223	Statistical evaluation of the feasibility of satellite-retrieved cloud parameters as indicators of PM2.5 levels. Journal of Exposure Science and Environmental Epidemiology, 2015, 25, 457-466.	1.8	12
224	A Bayesian Downscaler Model to Estimate Daily PM2.5 Levels in the Conterminous US. International Journal of Environmental Research and Public Health, 2018, 15, 1999.	1.2	12
225	Assessment of long-range transboundary aerosols in Seoul, South Korea from Geostationary Ocean Color Imager (GOCI) and ground-based observations. Environmental Pollution, 2021, 269, 115924.	3.7	12
226	Application of geostationary satellite and high-resolution meteorology data in estimating hourly PM2.5 levels during the Camp Fire episode in California. Remote Sensing of Environment, 2022, 271, 112890.	4.6	12
227	Satellite-Based Long-Term Spatiotemporal Patterns of Surface Ozone Concentrations in China: 2005–2019. Environmental Health Perspectives, 2022, 130, 27004.	2.8	12
228	The impact of climate change on heat-related mortality in six major cities, South Korea, under representative concentration pathways (RCPs). Frontiers in Environmental Science, 2014, 2, 3.	1.5	11
229	Associations of long-term exposure to air pollution with blood pressure and homocysteine among adults in Beijing, China: A cross-sectional study. Environmental Research, 2021, 197, 111202.	3.7	11
230	Spatio-Temporal Variations in the Associations between Hourly PM _{2.5} and Aerosol Optical Depth (AOD) from MODIS Sensors on Terra and Aqua. Health, 2013, 05, 8-13.	0.1	11
231	Assessment and statistical modeling of the relationship between remotely sensed aerosol optical depth and PM2.5 in the eastern United States. Research Report (health Effects Institute), 2012, , 5-83; discussion 85-91.	1.6	11
232	Field Evaluation of an Automated Pollen Sensor. International Journal of Environmental Research and Public Health, 2022, 19, 6444.	1.2	11
233	Low-cost nature-inspired deep learning system for PM2.5 forecast over Delhi, India. Environment International, 2022, 166, 107373.	4.8	11
234	Comparison of the Hazard Mapping System (HMS) fire product to groundâ€based fire records in Georgia, USA. Journal of Geophysical Research D: Atmospheres, 2016, 121, 2901-2910.	1.2	10

#	Article	IF	CITATIONS
235	Application of Bayesian Additive Regression Trees for Estimating Daily Concentrations of PM2.5 Components. Atmosphere, 2020, 11, 1233.	1.0	10
236	PM2.5 exposure on daily cardio-respiratory mortality in Lima, Peru, from 2010 to 2016. Environmental Health, 2020, 19, 63.	1.7	10
237	Combining Satellite Imagery and Numerical Model Simulation Results to Estimate Daily Ambient Air Pollution: An Ensemble Averaging Approach. ISEE Conference Abstracts, 2018, 2018, .	0.0	10
238	Projection of future wildfire emissions in western USA under climate change: contributions from changes in wildfire, fuel loading and fuel moisture. International Journal of Wildland Fire, 2022, 31, 1-13.	1.0	10
239	Long-term exposure to fine particulate matter modifies the association between physical activity and hypertension incidence. Journal of Sport and Health Science, 2022, 11, 708-715.	3.3	10
240	Projections of future wildfires impacts on air pollutants and air toxics in a changing climate over the western United States. Environmental Pollution, 2022, 304, 119213.	3.7	9
241	Public anxiety through various stages of COVID-19 coping: Evidence from China. PLoS ONE, 2022, 17, e0270229.	1.1	9
242	The Performance of the National Weather Service Heat Warning System against Ground Observations and Satellite Imagery. Advances in Meteorology, 2015, 2015, 1-15.	0.6	8
243	Years of life lost from ischaemic and haemorrhagic stroke related to ambient nitrogen dioxide exposure: A multicity study in China. Ecotoxicology and Environmental Safety, 2020, 203, 111018.	2.9	8
244	Spatially-Explicit Simulation Modeling of Ecological Response to Climate Change: Methodological Considerations in Predicting Shifting Population Dynamics of Infectious Disease Vectors. ISPRS International Journal of Geo-Information, 2013, 2, 645-664.	1.4	7
245	Evaluation of a MISR-Based High-Resolution Aerosol Retrieval Method Using AERONET DRAGON Campaign Data. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53, 4328-4339.	2.7	7
246	Estimating the Impact of COVID-19 on the PM2.5 Levels in China with a Satellite-Driven Machine Learning Model. Remote Sensing, 2021, 13, 1351.	1.8	7
247	The association between asthma emergency department visits and satellite-derived PM2.5 in Lima, Peru. Environmental Research, 2021, 199, 111226.	3.7	7
248	Benefits of active commuting on cardiovascular health modified by ambient fine particulate matter in China: A prospective cohort study. Ecotoxicology and Environmental Safety, 2021, 224, 112641.	2.9	7
249	Predicting spatiotemporally-resolved mean air temperature over Sweden from satellite data using an ensemble model. Environmental Research, 2022, 204, 111960.	3.7	7
250	Estimation of GEOS-Chem and GOCART Simulated Aerosol Profiles Using CALIPSO Observations over the Contiguous United States. Aerosol and Air Quality Research, 2016, 16, 3256-3265.	0.9	7
251	Child Survival and Early Lifetime Exposures to Ambient Fine Particulate Matter in India: A Retrospective Cohort Study. Environmental Health Perspectives, 2022, 130, 17009.	2.8	7
252	Asthma exacerbation due to climate change-induced wildfire smoke in the Western US. Environmental Research Letters, 2022, 17, 014023.	2.2	7

#	Article	IF	CITATIONS
253	Spatial regression with an informatively missing covariate: Application to mapping fine particulate matter. Environmetrics, 2018, 29, e2499.	0.6	6
254	A longitudinal analysis of PM2.5 exposure and multimorbidity clusters and accumulation among adults aged 45-85 in China. PLOS Global Public Health, 2022, 2, e0000520.	0.5	6
255	AOD–PM 2.5 Association: Paciorek and Liu Respond. Environmental Health Perspectives, 2010, 118, .	2.8	5
256	PM2.5 Prediction Modeling Using MODIS AOD and Its Implications for Health Effect Studies. Epidemiology, 2011, 22, S215.	1.2	5
257	Radiative Effects of Residential Sector Emissions in China: Sensitivity to Uncertainty in Black Carbon Emissions. Journal of Geophysical Research D: Atmospheres, 2019, 124, 5029-5044.	1.2	5
258	Significant but Spatiotemporal-Heterogeneous Health Risks Caused by Airborne Exposure to Multiple Toxic Trace Elements in China. Environmental Science & Technology, 2021, 55, 12818-12830.	4.6	5
259	Prediction of High Resolution Spatial-Temporal Air Pollutant Map from Big Data Sources. Lecture Notes in Computer Science, 2015, , 273-282.	1.0	5
260	Inter-Model Comparison of the Landscape Determinants of Vector-Borne Disease: Implications for Epidemiological and Entomological Risk Modeling. PLoS ONE, 2014, 9, e103163.	1.1	4
261	An Ensemble Machine-Learning Model to Predict Historical PM2.5 Concentrations in China from Satellite Data. ISEE Conference Abstracts, 2018, 2018, .	0.0	4
262	Evaluating the Utility of High-Resolution Spatiotemporal Air Pollution Data in Estimating Local PM2.5 Exposures in California from 2015–2018. Atmosphere, 2022, 13, 85.	1.0	4
263	PM _{2.5} â€Bound Polycyclic Aromatic Hydrocarbons (PAHs), Nitrated PAHs (NPAHs) and Oxygenated PAHs (OPAHs) in Typical Trafficâ€Related Receptor Environments. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	1.2	4
264	Ten years of MISR observations from Terra: Looking back, ahead, and in between. , 2010, , .		3
265	Developing indices to identify hotspots of skin cancer vulnerability among the Non-Hispanic White population in the United States. Annals of Epidemiology, 2021, 59, 64-71.	0.9	3
266	Short-term PM2.5 and cardiovascular admissions in NY State: assessing sensitivity to exposure model choice. Environmental Health, 2021, 20, 93.	1.7	3
267	Spatial Particulate Fields during High Winds in the Imperial Valley, California. Atmosphere, 2020, 11, 88.	1.0	3
268	Investigating the impact of air pollution on AMI and COPD hospital admissions in the coastal city of Qingdao, China. Frontiers of Environmental Science and Engineering, 2022, 16, 1.	3.3	3
269	Modeling Study of the Particulate Matter in Lima with the WRF-Chem Model: Case Study of April 2016. International Journal of Applied Engineering Research: IJAER, 2018, 13, 10129-10141.	0.3	3
270	Preliminary Evaluation of a Regional Atmospheric Chemical Data Assimilation System for Environmental Surveillance. International Journal of Environmental Research and Public Health, 2014, 11, 12795-12816.	1.2	2

#	Article	IF	CITATIONS
271	Balanced news for long-term growth. Nature Energy, 2020, 5, 500-501.	19.8	2
272	Satellite-Based Daily PM2.5 Estimates during Fire Seasons in Colorado. ISEE Conference Abstracts, 2018, 2018, .	0.0	2
273	Risk-based Prioritization Among Air Pollution Control Strategies in Yangtze River Delta, China. Epidemiology, 2011, 22, S149.	1.2	1
274	Using Air Quality Model-Data Fusion Methods for Developing Air Pollutant Exposure Fields and Comparison with Satellite AOD-Derived Fields: Application over North Carolina, USA. Springer Proceedings in Complexity, 2018, , 207-212.	0.2	1
275	Addressing Gaps in Age-Specific Evidence Used for United States Air Pollution Policy. ISEE Conference Abstracts, 2018, 2017, 907.	0.0	1
276	Assessing the Cumulative Climate-related Health Risks in the Eastern United States. Epidemiology, 2011, 22, S19.	1.2	0
277	Satellite Observation of Atmospheric Compositions for Air Quality and Climate Study. Advances in Meteorology, 2015, 2015, 1-2.	0.6	0
278	Mapping Speciated Ambient Particulate Matter Concentrations with the Multi-Angle Imager for Aerosols (MAIA). , 2018, , .		0
279	Water, water quality and health. , 2012, , 115-156.		Ο
280	Spatiotemporal Patterns of Solar and UV Irradiances in the Contiguous United States. ISEE Conference Abstracts, 2018, 2018, .	0.0	0
281	Incorporating Snow and Cloud Fractions in Random Forest to Estimate High Resolution PM2.5 Exposures in New York State. ISEE Conference Abstracts, 2018, 2018, .	0.0	0
282	Developing Advanced PM2.5 Exposure Models in Lima, Peru. ISEE Conference Abstracts, 2018, 2018, .	0.0	0
283	A PETAR method for risk assessment of human health and environment on the regional scale. Integrated Environmental Assessment and Management, 2023, 19, 239-253.	1.6	0
284	Hospital admission risks and ambient fine particulate matter exposure in Beijing, China. Atmospheric Environment, 2022, , 119291.	1.9	0