
Angelo Tartaglia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2280966/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Geometric definition of emission coordinates. Advances in Space Research, 2022, , .	2.6	1
2	From Kerr to Heisenberg. Entropy, 2021, 23, 315.	2.2	1
3	Growth and Inequalities in a Physicist's View. Biophysical Economics and Sustainability, 2020, 5, 1.	1.4	2
4	Relativistic positioning and sagnac-like measurements for fundamental physics in space. Advances in Space Research, 2020, 66, 2757-2763.	2.6	1
5	Detecting the angular momentum of the galactic dark halo. Advances in Space Research, 2019, 64, 545-550.	2.6	4
6	Test of gravitomagnetism with satellites around the Earth. European Physical Journal Plus, 2019, 134, 1.	2.6	16
7	How to use the Sun–Earth Lagrange points for fundamental physics and navigation. General Relativity and Gravitation, 2018, 50, 1.	2.0	12
8	Dark angular momentum of the galaxy. International Journal of Modern Physics D, 2018, 27, 1847012.	2.1	4
9	Energy Communities in Piedmont Region (IT). The case study in Pinerolo territory. , 2018, , .		10
10	Using Galileo for Detecting the Gravito-Magnetic Field of the Earth. , 2018, , .		0
11	Looking for a new test of general relativity in the solar system. Modern Physics Letters A, 2018, 33, 1850136.	1.2	5
12	Testing general relativity by means of ring lasers. European Physical Journal Plus, 2017, 132, 1.	2.6	46
13	LAGRANGE: An experiment for testing general relativity in the inner solar system. , 2017, , .		Ο
14	The GINGER Project. Nuclear and Particle Physics Proceedings, 2017, 291-293, 140-145.	0.5	1
15	Quantum time delay in the gravitational field of a rotating mass. Classical and Quantum Gravity, 2017, 34, 165008.	4.0	7
16	A network of heterodyne laser interferometers for monitoring and control of large ring-lasers. Proceedings of SPIE, 2016, , .	0.8	0
17	External metrology system for the stabilization of large ring-lasers. , 2016, , .		2
18	Light as a probe of the structure of space-time. Journal of Physics: Conference Series, 2016, 718, 072007.	0.4	2

#	Article	IF	CITATIONS
19	Very high sensitivity laser gyroscopes for general relativity tests in a ground laboratory. , 2016, , .		1
20	The strained state cosmology. International Journal of Modern Physics A, 2016, 31, 1641015.	1.5	2
21	RELATIVISTIC POSITIONING, PULSARS AND SPACE-TIME GEODESY. , 2015, , .		Ο
22	The Sagnac effect and pure geometry. American Journal of Physics, 2015, 83, 427-432.	0.7	32
23	A note on the Sagnac effect for matter beams. European Physical Journal Plus, 2015, 130, 1.	2.6	10
24	Light and/or atomic beams to detect ultraweak gravitational effects. EPJ Web of Conferences, 2014, 74, 03001.	0.3	2
25	Science and the Future: Introduction. E3S Web of Conferences, 2014, 2, 01001.	0.5	Ο
26	A ring lasers array for fundamental physics. Comptes Rendus Physique, 2014, 15, 866-874.	0.9	41
27	Measuring general relativity effects in a terrestrial lab by means of laser gyroscopes. Laser Physics, 2014, 24, 074005.	1.2	6
28	From the elasticity theory to cosmology and vice versa. Science China: Physics, Mechanics and Astronomy, 2014, 57, 597-603.	5.1	4
29	A note on the Sagnac effect and current terrestrial experiments. European Physical Journal Plus, 2014, 129, 1.	2.6	19
30	Dark energy as an elastic strain fluid. Monthly Notices of the Royal Astronomical Society, 2013, 429, 1149-1155.	4.4	2
31	MEASURING GRAVITOMAGNETIC EFFECTS BY MEANS OF RING LASERS. International Journal of Modern Physics Conference Series, 2013, 23, 125-134.	0.7	1
32	Experimental determination of gravitomagnetic effects by means of ring lasers. Journal of Physics: Conference Series, 2013, 453, 012019.	0.4	4
33	Is time enough in order to know where you are?. EPJ Web of Conferences, 2013, 58, 03003.	0.3	0
34	Spherical symmetry in a dark energy permeated spacetime. Classical and Quantum Gravity, 2012, 29, 115003.	4.0	4
35	Experimental tests of general relativity: Where are we?. , 2012, , .		0
36	A laser gyroscope system to detect the gravito-magnetic effect on Earth. Journal of Physics: Conference Series, 2012, 375, 062005.	0.4	5

#	Article	IF	CITATIONS
37	Measuring gravitomagnetic effects by a multi-ring-laser gyroscope. Physical Review D, 2011, 84, .	4.7	126
38	The Strained State Cosmology. , 2011, , .		1
39	A STRAINED SPACE-TIME TO EXPLAIN THE LARGE SCALE PROPERTIES OF THE UNIVERSE. International Journal of Modern Physics Conference Series, 2011, 03, 303-311.	0.7	1
40	Lensing in an elastically strained space-time. Journal of Physics: Conference Series, 2011, 283, 012037.	0.4	0
41	COSMOLOGICAL CONSTRAINTS FOR THE COSMIC DEFECT THEORY. International Journal of Modern Physics D, 2011, 20, 1039-1051.	2.1	7
42	A null frame for spacetime positioning by means of pulsating sources. Advances in Space Research, 2011, 47, 645-653.	2.6	19
43	A strained space-time. Journal of Physics: Conference Series, 2011, 314, 012034.	0.4	Ο
44	PULSARS AS CELESTIAL BEACONS TO DETECT THE MOTION OF THE EARTH. International Journal of Modern Physics D, 2011, 20, 1025-1038.	2.1	14
45	Emission coordinates for the navigation in space. Acta Astronautica, 2010, 67, 539-545.	3.2	9
46	A LASER GYROSCOPE SYSTEM TO DETECT THE GRAVITO-MAGNETIC EFFECT ON EARTH. International Journal of Modern Physics D, 2010, 19, 2331-2343.	2.1	31
47	Massive gravitational waves from the Cosmic Defect theory. , 2010, , .		0
48	From Elastic Continua To Space-time. , 2010, , .		1
49	A tensor theory of spacetime as a strained material continuum. Classical and Quantum Gravity, 2010, 27, 035001.	4.0	14
50	Space-time as a deformable continuum. Journal of Physics: Conference Series, 2010, 222, 012028.	0.4	0
51	COSMIC DEFECT COSMOLOGY. International Journal of Modern Physics A, 2009, 24, 1620-1624.	1.5	Ο
52	FITTING THE LUMINOSITY DATA FROM TYPE Ia SUPERNOVAE IN THE FRAME OF THE COSMIC DEFECT THEORY. International Journal of Modern Physics D, 2009, 18, 501-512.	2.1	4
53	Emission versus Fermi coordinates: applications to relativistic positioning systems. Classical and Quantum Gravity, 2008, 25, 205011.	4.0	23
54	MAPPING CARTESIAN COORDINATES INTO EMISSION COORDINATES: SOME TOY MODELS. International Journal of Modern Physics D, 2008, 17, 311-326.	2.1	6

#	Article	IF	CITATIONS
55	A DARKLESS SPACE–TIME. International Journal of Modern Physics D, 2008, 17, 275-299.	2.1	4
56	Summary of session B3: analytic approximations, perturbation methods and their applications. Classical and Quantum Gravity, 2008, 25, 114020.	4.0	3
57	Fitting The Luminosity Data From Type Ia Supernovae By Means Of The Cosmic Defect Theory. AIP Conference Proceedings, 2008, , .	0.4	0
58	Binary black hole merger in the extreme-mass-ratio limit. Classical and Quantum Gravity, 2007, 24, S109-S123.	4.0	74
59	Vector field theories in cosmology. Physical Review D, 2007, 76, .	4.7	22
60	Modelling and analysis of a-SiC:H p–i–n photodetectors: Effect of hydrogen dilution on dynamic model. Solid-State Electronics, 2007, 51, 1067-1072.	1.4	4
61	Gravitational Faraday rotation in binary pulsar systems. Monthly Notices of the Royal Astronomical Society, 2007, 374, 847-851.	4.4	8
62	DOPPLER EFFECTS FROM BENDING OF LIGHT RAYS IN CURVED SPACE–TIMES. International Journal of Modern Physics D, 2006, 15, 1183-1198.	2.1	2
63	Post-newtonian parameters from alternative theories of gravity. General Relativity and Gravitation, 2005, 37, 1891-1904.	2.0	102
64	Rotation Effects and The Gravito-Magnetic Approach. AIP Conference Proceedings, 2005, , .	0.4	2
65	SPACE-TIME DEFECTS AS A SOURCE OF CURVATURE AND TORSION. International Journal of Modern Physics A, 2005, 20, 2336-2340.	1.5	11
66	Time delay in binary systems. Physical Review D, 2005, 71, .	4.7	7
67	Post-Keplerian parameter to test gravitomagnetic effects in binary pulsar systems. Physical Review D, 2005, 72, .	4.7	5
68	Gravito-electromagnetism versus electromagnetism. European Journal of Physics, 2004, 25, 203-210.	0.6	25
69	Gravitomagnetic Measurement of the Angular Momentum of Celestial Bodies. General Relativity and Gravitation, 2004, 36, 293-301.	2.0	3
70	Does Anything Happen on a Rotating Disk?. , 2004, , 261-273.		2
71	An Approximated Solution of the Einstein Equations for a Rotating Body with Negligible Mass. General Relativity and Gravitation, 2003, 35, 371-387.	2.0	2
72	Einstein–Cartan theory as a theory of defects in space–time. American Journal of Physics, 2003, 71, 1303-1313.	0.7	35

#	Article	IF	CITATIONS
73	Lorentz contraction and accelerated systems. European Journal of Physics, 2003, 24, 215-220.	0.6	10
74	Weighing the Milky Way. Classical and Quantum Gravity, 2003, 20, 2815-2825.	4.0	1
75	Angular-momentum effects in weak gravitational fields. Europhysics Letters, 2002, 60, 167-173.	2.0	7
76	An automatic evaluation system for technical education at the University level. IEEE Transactions on Education, 2002, 45, 268-275.	2.4	31
77	Angular Momentum Effects in Michelson–Morley Type Experiments. General Relativity and Gravitation, 2002, 34, 1371-1382.	2.0	9
78	Sagnac, Gclock Effect and Gravitomagnetism. , 2002, , 353-360.		0
79	Verifying the learning process in physics. European Journal of Physics, 2001, 22, 257-265.	0.6	3
80	Gravitomagnetism, clocks and geometry. European Journal of Physics, 2001, 22, 105-111.	0.6	10
81	Geometric Treatment of the Gravitomagnetic Clock Effect. General Relativity and Gravitation, 2000, 32, 1745-1756.	2.0	26
82	Detection of the gravitomagnetic clock effect. Classical and Quantum Gravity, 2000, 17, 783-792.	4.0	34
83	Influence of the angular momentum of astrophysical objects on light and clocks and related measurements. Classical and Quantum Gravity, 2000, 17, 2381-2384.	4.0	8
84	On Local and Global Measurements of the Speed of Light on Rotating Platforms. Foundations of Physics Letters, 1999, 12, 179-186.	0.6	37
85	Lengths on rotating platforms. Foundations of Physics Letters, 1999, 12, 17-28.	0.6	15
86	Speed of Light on Rotating Platforms. Foundations of Physics, 1998, 28, 1663-1683.	1.3	61
87	General relativistic corrections to the Sagnac effect. Physical Review D, 1998, 58, .	4.7	40
88	Cosmic strings and intermediate scale structure of the universe. Societa Italiana Di Fisica Nuovo Cimento B-General Physics, Relativity Astronomy and Mathematical Physics and Methods, 1989, 104, 353-360.	0.2	0
89	Problems with the spontaneous dimensional reduction of Kaluza-Klein theories by means of antisymmetric tensor fields in five dimensions. Physics Letters, Section A: General, Atomic and Solid State Physics, 1988, 131, 25-27.	2.1	0
90	On the lorentz-symmetry breaking. Il Nuovo Cimento A, 1988, 99, 107-116.	0.2	0

#	Article	IF	CITATIONS
91	Is the Lorentz symmetry exact?. Chinese Physics Letters, 1988, 5, 243-244.	3.3	О
92	LORENTZ NONINVARIANCE WITHOUT TACHYONS IN THE SCHWARZSCHILD FIELD. Modern Physics Letters A, 1987, 02, 385-390.	1.2	2
93	General-relativistic models of a spherical charge and mass distribution. Societa Italiana Di Fisica Nuovo Cimento B-General Physics, Relativity Astronomy and Mathematical Physics and Methods, 1986, 95, 55-62.	0.2	3
94	Relativistic motion of a sphere in a cold incoherent dust. Societa Italiana Di Fisica Nuovo Cimento B-General Physics, Relativity Astronomy and Mathematical Physics and Methods, 1984, 80, 169-182.	0.2	0
95	Non-conservative forces, lagrangians and quantisation. European Journal of Physics, 1983, 4, 231-234.	0.6	18
96	Transmission and reflection on a viscous barrier. Societa Italiana Di Fisica Nuovo Cimento B-General Physics, Relativity Astronomy and Mathematical Physics and Methods, 1982, 72, 190-198.	0.2	0
97	A model of the growth and evolution of woods. Mathematics and Computers in Simulation, 1982, 24, 230-232.	4.4	Ο
98	Quantization of motion in a velocity-dependent field: Thev2case. Physical Review A, 1981, 23, 1591-1593.	2.5	24
99	The quantization of quadratic friction. Physics Letters, Section A: General, Atomic and Solid State Physics, 1980, 77, 1-2.	2.1	31
100	A comment on a proposed « new mechanics ». Lettere Al Nuovo Cimento Rivista Internazionale Della Società Italiana Di Fisica, 1980, 28, 193-194.	0.4	1
101	General Langrangians for the motion of a point particle in a viscous medium and the problem of quantization. Societa Italiana Di Fisica Nuovo Cimento B-General Physics, Relativity Astronomy and Mathematical Physics and Methods, 1980, 57, 131-145.	0.2	7
102	«Two fluids» model of a simple liquid. Societa Italiana Di Fisica Nuovo Cimento B-General Physics, Relativity Astronomy and Mathematical Physics and Methods, 1979, 49, 283-297.	0.2	0
103	Heliumlike excitations in simple liquids. Societa Italiana Di Fisica Nuovo Cimento B-General Physics, Relativity Astronomy and Mathematical Physics and Methods, 1977, 37, 97-112.	0.2	3
104	Molecular dynamics in H2O and D2O analysis by inelastic scattering of 10 Ã neutrons. Societa Italiana Di Fisica Nuovo Cimento B-General Physics, Relativity Astronomy and Mathematical Physics and Methods, 1977, 37, 185-197.	0.2	2
105	A canonical approach to the quantum problem on the motion of a particle in a viscous medium. Lettere Al Nuovo Cimento Rivista Internazionale Della Società Italiana Di Fisica, 1977, 19, 205-209.	0.4	32
106	Scattering of 10 â,,« neutrons from heavy water. Lettere Al Nuovo Cimento Rivista Internazionale Della SocietĂ Italiana Di Fisica, 1975, 14, 453-457.	0.4	2
107	A method for the multiple scattering correction in double-differential neutron scattering measurements. Nuclear Instruments & Methods, 1975, 124, 375-379.	1.2	1
108	A cold-neutron spectrometer for inelastic-scattering studies. Nuclear Instruments & Methods, 1974, 114, 21-27.	1.2	5

#	Article	IF	CITATIONS
109	Channeling of fission fragments in silicon. Lettere Al Nuovo Cimento Rivista Internazionale Della Società Italiana Di Fisica, 1972, 5, 918-920.	0.4	2
110	Range of fission products in carbon. Lettere Al Nuovo Cimento Rivista Internazionale Della SocietÃ Italiana Di Fisica, 1970, 4, 1185-1190.	0.4	6
111	ALFA-EVALU: a collaboration network among Latin American and European Universities. , 0, , .		Ο
112	Detecting the gravito-magnetic field of the dark halo of the Milky Way - the LaDaHaD mission concept. Experimental Astronomy, 0, , 1.	3.7	5