Elena Marcos Porras

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2280645/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Post-fire natural regeneration of a Pinus pinaster forest in NW Spain. Plant Ecology, 2008, 197, 81-90.	1.6	103
2	Regeneration after wildfire in communities dominated by Pinus pinaster, an obligate seeder, and in others dominated by Quercus pyrenaica, a typical resprouter. Forest Ecology and Management, 2003, 184, 209-223.	3.2	87
3	Burn severity metrics in fire-prone pine ecosystems along a climatic gradient using Landsat imagery. Remote Sensing of Environment, 2018, 206, 205-217.	11.0	86
4	Recovery after Experimental Cutting and Burning in Three Shrub Communities with Different Dominant Species. Plant Ecology, 2005, 180, 175-185.	1.6	84
5	Land surface temperature as potential indicator of burn severity in forest Mediterranean ecosystems. International Journal of Applied Earth Observation and Geoinformation, 2015, 36, 1-12.	2.8	75
6	Environmental drivers of fire severity in extreme fire events that affect Mediterranean pine forest ecosystems. Forest Ecology and Management, 2019, 433, 24-32.	3.2	72
7	Abandonment and management in Spanish dehesa systems: Effects on soil features and plant species richness and composition. Forest Ecology and Management, 2009, 257, 731-738.	3.2	53
8	The role of fire frequency and severity on the regeneration of Mediterranean serotinous pines under different environmental conditions. Forest Ecology and Management, 2019, 444, 59-68.	3.2	53
9	Wildfire effects on soil properties in fire-prone pine ecosystems: Indicators of burn severity legacy over the medium term after fire. Applied Soil Ecology, 2019, 135, 147-156.	4.3	52
10	Plant and carabid beetle species diversity in relation to forest type and structural heterogeneity. European Journal of Forest Research, 2010, 129, 31-45.	2.5	49
11	Evaluation and comparison of Landsat 8, Sentinel-2 and Deimos-1 remote sensing indices for assessing burn severity in Mediterranean fire-prone ecosystems. International Journal of Applied Earth Observation and Geoinformation, 2019, 80, 137-144.	2.8	48
12	Fire regimes shape diversity and traits of vegetation under different climatic conditions. Science of the Total Environment, 2020, 716, 137137.	8.0	42
13	Remote Sensing Applied to the Study of Fire Regime Attributes and Their Influence on Post-Fire Greenness Recovery in Pine Ecosystems. Remote Sensing, 2018, 10, 733.	4.0	40
14	Short-term effects of experimental burning on soil nutrients in the Cantabrian heathlands. Ecological Engineering, 2009, 35, 820-828.	3.6	38
15	Impacts of drought and nitrogen addition on <i>Calluna</i> heathlands differ with plant lifeâ€history stage. Journal of Ecology, 2015, 103, 1141-1152.	4.0	37
16	Does excess nitrogen supply increase the drought sensitivity of European beech (Fagus sylvatica L.) seedlings?. Plant Ecology, 2016, 217, 393-405.	1.6	37
17	Changes in a Humic Cambisol heated (100–500°C) under laboratory conditions: The significance of heating time. Geoderma, 2007, 138, 237-243.	5.1	36
18	Fire recurrence and emergency post-fire management influence seedling recruitment and growth by altering plant interactions in fire-prone ecosystems. Forest Ecology and Management, 2017, 402, 63-75.	3.2	34

Elena Marcos Porras

#	Article	IF	CITATIONS
19	Impact of burn severity on soil properties in a Pinus pinaster ecosystem immediately after fire. International Journal of Wildland Fire, 2019, 28, 354.	2.4	33
20	Comparative Analysis of Runo and Sediment Yield with a Rainfall Simulator After Experimental Fire. Arid Land Research and Management, 2000, 14, 293-307.	0.3	31
21	Forest structure and understory diversity in Quercus pyrenaica communities with different human uses and disturbances. Forest Ecology and Management, 2006, 227, 50-58.	3.2	31
22	Interactions between large high-severity fires and salvage logging on a short return interval reduce the regrowth of fire-prone serotinous forests. Forest Ecology and Management, 2018, 414, 54-63.	3.2	30
23	Comparison of community structure and soil characteristics in different aged Pinus sylvestris plantations and a natural pine forest. Forest Ecology and Management, 2007, 247, 35-42.	3.2	29
24	Evaluation of Composite Burn Index and Land Surface Temperature for Assessing Soil Burn Severity in Mediterranean Fire-Prone Pine Ecosystems. Forests, 2018, 9, 494.	2.1	28
25	Tree effects on the chemical topsoil features of oak, beech and pine forests. European Journal of Forest Research, 2010, 129, 25-30.	2.5	25
26	Soil-vegetation relationships in Mediterranean forests after fire. Forest Ecosystems, 2021, 8, .	3.1	25
27	Weather types and rainfall microstructure in Leon, Spain. International Journal of Climatology, 2017, 37, 1834-1842.	3.5	23
28	The stable isotope ecology of terrestrial plant succession. Plant Ecology and Diversity, 2011, 4, 117-130.	2.4	22
29	Effects of fertilization and cutting on the chemical composition of vegetation and soils of mountain heathlands in Spain. Journal of Vegetation Science, 2003, 14, 417-424.	2.2	21
30	Bulk deposition of atmospheric inorganic nitrogen in mountainous heathland ecosystems in North-Western Spain. Atmospheric Research, 2017, 183, 237-244.	4.1	21
31	Do Fire Regime Attributes Affect Soil Biochemical Properties in the Same Way under Different Environmental Conditions?. Forests, 2020, 11, 274.	2.1	17
32	Time- and age-related effects of experimentally simulated nitrogen deposition on the functioning of montane heathland ecosystems. Science of the Total Environment, 2018, 613-614, 149-159.	8.0	16
33	Effects of sowing native herbaceous species on the post-fire recovery in a heathland. Acta Oecologica, 2003, 24, 131-138.	1.1	14
34	Comparison of understory plant community composition and soil characteristics in Quercus pyrenaica stands with different human uses. Forest Ecology and Management, 2007, 241, 235-242.	3.2	14
35	Assessment of the influence of biophysical properties related to fuel conditions on fire severity using remote sensing techniques: a case study on a large fire in NW Spain. International Journal of Wildland Fire, 2019, 28, 512.	2.4	14
36	Evaluation of Prescribed Fires from Unmanned Aerial Vehicles (UAVs) Imagery and Machine Learning Algorithms. Remote Sensing, 2020, 12, 1295.	4.0	14

Elena Marcos Porras

#	Article	IF	CITATIONS
37	Predicting potential wildfire severity across Southern Europe with global data sources. Science of the Total Environment, 2022, 829, 154729.	8.0	14
38	Phenotypic Plasticity Explains Response Patterns of European Beech (Fagus sylvatica L.) Saplings to Nitrogen Fertilization and Drought Events. Forests, 2017, 8, 91.	2.1	13
39	Burn Severity and Post-Fire Land Surface Albedo Relationship in Mediterranean Forest Ecosystems. Remote Sensing, 2019, 11, 2309.	4.0	11
40	Soil Resistance to Burn Severity in Different Forest Ecosystems in the Framework of a Wildfire. Forests, 2020, 11, 773.	2.1	11
41	Multiple Endmember Spectral Mixture Analysis (MESMA) Applied to the Study of Habitat Diversity in the Fine-Grained Landscapes of the Cantabrian Mountains. Remote Sensing, 2021, 13, 979.	4.0	11
42	Post-Fire Management of Shrublands. Managing Forest Ecosystems, 2012, , 293-319.	0.9	10
43	Disruption of trophic interactions involving the heather beetle by atmospheric nitrogen deposition. Environmental Pollution, 2016, 218, 436-445.	7.5	10
44	Marginal Calluna populations are more resistant to climate change, but not under high-nitrogen loads. Plant Ecology, 2016, 217, 111-122.	1.6	10
45	Determining the potential impacts of fire and different land uses on splash erosion in the margins of drylands. Journal of Arid Environments, 2021, 186, 104419.	2.4	10
46	Transhumant Sheep Grazing Enhances Ecosystem Multifunctionality in Productive Mountain Grasslands: A Case Study in the Cantabrian Mountains. Frontiers in Ecology and Evolution, 2022, 10, .	2.2	10
47	Short-term effects of burn severity on ecosystem multifunctionality in the northwest Iberian Peninsula. Science of the Total Environment, 2022, 844, 157193.	8.0	10
48	Physiological and Regenerative Plant Traits Explain Vegetation Regeneration under Different Severity Levels in Mediterranean Fire-Prone Ecosystems. Forests, 2021, 12, 149.	2.1	9
49	Temporary changes of the edaphic characteristics during the first year of postfire regeneration in two oak groves. Arid Land Research and Management, 1995, 9, 289-297.	0.3	8
50	Interactions between mediterranean shrub species eight years after experimental fire. Plant Ecology, 2004, 170, 235-241.	1.6	8
51	Do mature pine plantations resemble deciduous natural forests regarding understory plant diversity and canopy structure in historically modified landscapes?. European Journal of Forest Research, 2011, 130, 949-957.	2.5	8
52	ALOS-2 L-band SAR backscatter data improves the estimation and temporal transferability of wildfire effects on soil properties under different post-fire vegetation responses. Science of the Total Environment, 2022, 842, 156852.	8.0	7
53	Allocation patterns of airborne nitrogen in mountainous heathlands – A 15 N tracer study in the Cantabrian Mountains (NW Spain). Ecological Engineering, 2015, 84, 128-135.	3.6	6
54	Plant and vegetation functional responses to cumulative high nitrogen deposition in rear-edge heathlands. Science of the Total Environment, 2018, 637-638, 980-990.	8.0	6

ELENA MARCOS PORRAS

#	Article	IF	CITATIONS
55	The Role of Weather Types in Assessing the Rainfall Key Factors for Erosion in Two Different Climatic Regions. Atmosphere, 2020, 11, 443.	2.3	5
56	Splash Erosion on Terraces, Does It Make a Difference If the Terracing Is Done before or after a Fire?. Hydrology, 2021, 8, 180.	3.0	5
57	Relationship between soil changes and plant succession in postfire regeneration of <i>Quercus pyrenaica</i> ecosystems. Arid Land Research and Management, 1996, 10, 85-93.	0.3	3
58	Differential responses of ecosystem components to a low-intensity fire in a Mediterranean forest: a three-year case study. Community Ecology, 2013, 14, 110-120.	0.9	3
59	The role of prescribed fire in the provision of regulating ecosystem services of Spanish heathlands. Ecological Questions, 0, 21, 71.	0.3	2
60	Using Unmanned Aerial Vehicles (UAV) for forest damage monitoring in south-western Europe. , 2019, ,		2
61	Thermally enhanced spectral indices to discriminate burn severity in Mediterranean forest ecosystems. , 2018, , .		1
62	Changes on albedo after a large forest fire in Mediterranean ecosystems. , 2015, , .		0
63	Short-term effects of nitrogen deposition on soil microbial biomass in Calluna heathlands NW Spain: critical loads. Ecological Questions, 0, 21, 65.	0.3	Ο
64	Soil-plant relationship in Calluna heathlands after experimental burning and nitrogen fertilization, studies from NW Spain. Ecological Questions, 0, 21, 67.	0.3	0
65	Effects of cutting and nitrogen deposition on biodiversity in Cantabrian heathlands. Applied	1.9	0