List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2280435/publications.pdf Version: 2024-02-01

<u>ΕρÃΩηÃΩρις Vocei</u>

#	Article	IF	CITATIONS
1	Continuous Extraction of Black Liquor Salts under Hydrothermal Conditions. Industrial & Engineering Chemistry Research, 2021, 60, 4072-4085.	3.7	13
2	High Yields of Aromatic Monomers from Acidolytic Oxidation of Kraft Lignin in a Biphasic System. Industrial & Engineering Chemistry Research, 2021, 60, 11009-11018.	3.7	9
3	Advanced Analytical Study of Process Streams for a Rational Optimization of Hydrothermal Gasification. ACS Engineering Au, 2021, 1, 134-147.	5.1	3
4	Investigating active phase loss from supported ruthenium catalysts during supercritical water gasification. Catalysis Science and Technology, 2021, 11, 7431-7444.	4.1	10
5	Sub- and Supercritical Water Liquefaction of Kraft Lignin and Black Liquor Derived Lignin. Energies, 2020, 13, 3309.	3.1	47
6	Hydrothermal Conversion of Biomass. , 2019, , 1251-1295. Equation of state and thermodynamic properties for mixtures of smml; math		0
7	xmins:mml= http://www.w3.org/1998/Math/MathML_altimg= si38.gif overflow="scroll"> <mml:msub><mml:mi mathvariant="normal">H<mml:mn>2</mml:mn></mml:mi </mml:msub> <mml:mi mathvariant="normal">O, <mml:math !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!</mml:math </mml:mi 	3.2	17
8	Review and Performance Evaluation of Fifty Alternative Liquid Fuels for Spark-Ignition Engines. Energy & amp; Fuels, 2019, 33, 2186-2196.	5.1	29
9	Deactivation of Methanation Catalyst (Ru/C) Under Supercritical Water by Deposition of Nonâ€Volatile Organics: First Insights Into Deposition Patterns and Chemical Properties. ChemCatChem, 2019, 11, 1747-1755.	3.7	5
10	Mechanochemistry-assisted hydrolysis of softwood over stable sulfonated carbon catalysts in a semi-batch process. RSC Advances, 2019, 9, 33525-33538.	3.6	6
11	Molecular footprint of co-solvents in hydrothermal liquefaction (HTL) of Fallopia Japonica. Journal of Supercritical Fluids, 2019, 143, 211-222.	3.2	12
12	Fate and reuse of nitrogen-containing organics from the hydrothermal conversion of algal biomass. Algal Research, 2018, 32, 241-249.	4.6	4
13	Recovery of value-added chemicals by solvolysis of unsaturated polyester resin. Journal of Cleaner Production, 2018, 170, 131-136.	9.3	24
14	Oxidative Biphasic Depolymerization (BPD) of Kraft Lignin at Low pH. ChemistrySelect, 2018, 3, 11680-11686.	1.5	11
15	Deactivation and Regeneration of Sulfonated Carbon Catalysts in Hydrothermal Reaction Environments. ChemSusChem, 2018, 11, 2189-2201.	6.8	33
16	Optimum Fuel for Spark Ignition Engines from Lignin Pyrolysis Oil. Energy & Fuels, 2018, 32, 9388-9398.	5.1	5
17	Catalytic gasification of digestate sludge in supercritical water on the pilot plant scale. Biomass Conversion and Biorefinery, 2017, 7, 415-424.	4.6	20
18	Estimation of Binary Diffusion Coefficients in Supercritical Water: Mini Review. Industrial & Engineering Chemistry Research, 2017, 56, 4847-4855.	3.7	17

#	Article	IF	CITATIONS
19	Performance evaluation of gasoline alternatives using a thermodynamic spark-ignition engine model. Sustainable Energy and Fuels, 2017, 1, 1991-2005.	4.9	7
20	Editorial thematic issue BCAB. Biomass Conversion and Biorefinery, 2017, 7, 399-400.	4.6	0
21	Catalytic Supercritical Water Gasification: Continuous Methanization of <i>Chlorella vulgaris</i> . Industrial & Engineering Chemistry Research, 2017, 56, 6256-6265.	3.7	39
22	Catalytic supercritical water gasification: Interaction of sulfur with ZnO and the ruthenium catalyst. Applied Catalysis B: Environmental, 2017, 202, 262-268.	20.2	36
23	Hydrothermal Conversion of Biomass. , 2017, , 1-46.		0
24	Speciation and Structural Properties of Hydrothermal Solutions of Sodium and Potassium Sulfate Studied by Molecular Dynamics Simulations. ChemPhysChem, 2016, 17, 1446-1453.	2.1	10
25	Ruthenium Dispersion: A Key Parameter for the Stability of Supported Ruthenium Catalysts during Catalytic Supercritical Water Gasification. ChemCatChem, 2016, 8, 139-141.	3.7	18
26	A novel salt separator for the supercritical water gasification of biomass. Journal of Supercritical Fluids, 2016, 117, 113-121.	3.2	27
27	The Influence of Zeolites on Radical Formation During Lignin Pyrolysis. ChemSusChem, 2016, 9, 2397-2403.	6.8	21
28	Hydrothermal Oxidation of Fecal Sludge: Experimental Investigations and Kinetic Modeling. Industrial & amp; Engineering Chemistry Research, 2016, 55, 11910-11922.	3.7	8
29	Hydrothermale Verfahren. , 2016, , 1267-1337.		1
30	High-Field Electron Paramagnetic Resonance and Density Functional Theory Study of Stable Organic Radicals in Lignin: Influence of the Extraction Process, Botanical Origin, and Protonation Reactions on the Radical g Tensor. Journal of Physical Chemistry A, 2015, 119, 6475-6482.	2.5	62
31	Effect of carbon surface functional groups on the synthesis of Ru/C catalysts for supercritical water gasification. Catalysis Science and Technology, 2015, 5, 3658-3666.	4.1	33
32	First developments towards closing the nutrient cycle in a biofuel production process. Algal Research, 2015, 8, 76-82.	4.6	42
33	Phenols and aromatics from fast pyrolysis of variously prepared lignins from hard- and softwoods. Journal of Analytical and Applied Pyrolysis, 2015, 115, 214-223.	5.5	96
34	Ion Association in Hydrothermal Sodium Sulfate Solutions Studied by Modulated FT-IR-Raman Spectroscopy and Molecular Dynamics. Journal of Physical Chemistry B, 2015, 119, 9847-9857.	2.6	24
35	Chemicals from Lignin by Catalytic Fast Pyrolysis, from Product Control to Reaction Mechanism. Chimia, 2015, 69, 597.	0.6	25
36	Onâ€Stream Regeneration of a Sulfurâ€Poisoned Ruthenium–Carbon Catalyst Under Hydrothermal Gasification Conditions. ChemCatChem, 2014, 6, 626-633.	3.7	13

#	Article	IF	CITATIONS
37	Gasification and liquefaction of solid fuels by hydrothermal conversion methods. Journal of Analytical and Applied Pyrolysis, 2014, 108, 265-273.	5.5	6
38	Liquefaction of wood in hot compressed water. Chemical Engineering Science, 2014, 109, 111-122.	3.8	29
39	Continuous hydrothermal gasification of glycerol mixtures: Effect of glycerol and its degradation products on the continuous salt separation and the enhancing effect of K3PO4 on the glycerol degradation. Journal of Supercritical Fluids, 2014, 95, 364-372.	3.2	12
40	Hydrothermal Liquefaction of the Microalgae <i>Phaeodactylum tricornutum</i> : Impact of Reaction Conditions on Product and Elemental Distribution. Energy & Fuels, 2014, 28, 5792-5803.	5.1	53
41	Inâ€situ Observation of Radicals and Molecular Products During Lignin Pyrolysis. ChemSusChem, 2014, 7, 2022-2029.	6.8	65
42	Continuous Hydrothermal Gasification of Glycerol Mixtures: Autothermal Operation, Simultaneous Salt Recovery, and the Effect of K ₃ PO ₄ on the Catalytic Gasification. Industrial & Engineering Chemistry Research, 2014, 53, 8404-8415.	3.7	16
43	Continuous catalytic hydrothermal gasification of algal biomass and case study on toxicity of aluminum as a step toward effluents recycling. Catalysis Today, 2014, 223, 35-43.	4.4	46
44	High pressure differential scanning calorimetry of the hydrothermal salt solutions K2SO4–Na2SO4–H2O and K2HPO4–H2O. RSC Advances, 2013, 3, 24503.	3.6	16
45	Catalysis in supercritical water: Pathway of the methanation reaction and sulfur poisoning over a Ru/C catalyst during the reforming of biomolecules. Journal of Catalysis, 2013, 301, 38-45.	6.2	55
46	Hydrothermal catalytic gasification of fermentation residues from a biogas plant. Biomass and Bioenergy, 2013, 53, 138-148.	5.7	25
47	Stability and Performance of Ruthenium Catalysts Based on Refractory Oxide Supports in Supercritical Water Conditions. Energy & Fuels, 2013, 27, 4739-4747.	5.1	26
48	Tar and coke formation during hydrothermal processing of glycerol and glucose. Influence of temperature, residence time and feed concentration. Journal of Supercritical Fluids, 2012, 70, 126-136.	3.2	65
49	Evidence of Scrambling over Rutheniumâ€based Catalysts in Supercriticalâ€water Gasification. ChemCatChem, 2012, 4, 1185-1189.	3.7	21
50	Continuous salt precipitation and separation from supercritical water. Part 3: Interesting effects in processing type 2 salt mixtures. Journal of Supercritical Fluids, 2012, 61, 44-54.	3.2	56
51	Optimal process design for the polygeneration of SNG, power and heat by hydrothermal gasification of waste biomass: Process optimisation for selected substrates. Energy and Environmental Science, 2011, 4, 1742.	30.8	35
52	Optimal process design for the polygeneration of SNG, power and heat by hydrothermal gasification of waste biomass: Thermo-economic process modelling and integration. Energy and Environmental Science, 2011, 4, 1726.	30.8	66
53	Phase transitions in hydrothermal K2HPO4 solutions. Journal of Supercritical Fluids, 2011, 57, 207-212.	3.2	9
54	Applying spatially resolved concentration and temperature measurements in a catalytic plate reactor for the kinetic study of CO methanation. Journal of Catalysis, 2010, 271, 262-279.	6.2	122

#	Article	IF	CITATIONS
55	Corrigendum to "Applying spatially resolved concentration and temperature measurements in a catalytic plate reactor for the kinetic study of CO methanation―[J. Catal. 271 (2010) 262–279]. Journal of Catalysis, 2010, 273, 82.	6.2	2
56	Towards Understanding the Catalytic Reforming of Biomass in Supercritical Water. Angewandte Chemie - International Edition, 2010, 49, 6434-6437.	13.8	29
57	Continuous salt precipitation and separation from supercritical water. Part 1: Type 1 salts. Journal of Supercritical Fluids, 2010, 52, 99-112.	3.2	122
58	Continuous salt precipitation and separation from supercritical water. Part 2. Type 2 salts and mixtures of two salts. Journal of Supercritical Fluids, 2010, 52, 113-124.	3.2	89
59	Water-in-water tracer studies of supercritical-water reversing jets using neutron radiography. Journal of Supercritical Fluids, 2010, 54, 250-257.	3.2	12
60	SunCHem: an integrated process for the hydrothermal production of methane from microalgae and CO2 mitigation. Journal of Applied Phycology, 2009, 21, 529-541.	2.8	126
61	Catalytic reforming of gasoline to hydrogen: Kinetic investigation of deactivation processes. International Journal of Hydrogen Energy, 2009, 34, 8023-8033.	7.1	23
62	Normal-phase dynamic imaging of supercritical-water salt precipitation using neutron radiography. Journal of Supercritical Fluids, 2009, 49, 71-78.	3.2	35
63	Thermal decomposition and burning behavior of cellulose treated with ethyl ester phosphoramidates: Effect of alkyl substituent on nitrogen atom. Polymer Degradation and Stability, 2009, 94, 1125-1134.	5.8	130
64	Reforming of methane over noble metal catalysts: Catalyst deactivation induced by thiophene. Catalysis Today, 2009, 143, 9-16.	4.4	19
65	Catalytic gasification of algae in supercritical water for biofuel production and carbon capture. Energy and Environmental Science, 2009, 2, 535.	30.8	202
66	X-ray Absorption Fine Structure Study of the Effect of Protonation on Disorder and Multiple Scattering in Phosphate Solutions and Solids. Journal of Physical Chemistry A, 2009, 113, 6895-6903.	2.5	30
67	Hydrothermal Gasification of Waste Biomass: Process Design and Life Cycle Asessment. Environmental Science & Technology, 2009, 43, 1578-1583.	10.0	73
68	A thermogravimetric study of the partial oxidation of methanol for hydrogen production over a Cu/ZnO/Al2O3 catalyst. Applied Catalysis B: Environmental, 2008, 84, 827-834.	20.2	27
69	In situ visualization of the performance of a supercritical-water salt separator using neutron radiography. Journal of Supercritical Fluids, 2008, 43, 490-499.	3.2	62
70	Thermochemical biofuel production in hydrothermal media: A review of sub- and supercritical water technologies. Energy and Environmental Science, 2008, 1, 32.	30.8	1,709
71	Synthetic natural gas from biomass by catalytic conversion in supercritical water. Green Chemistry, 2007, 9, 616.	9.0	49
72	Synthetic natural gas by hydrothermal gasification of biomass. Journal of Supercritical Fluids, 2007, 43, 91-105.	3.2	91

#	Article	IF	CITATIONS
73	Catalytic autothermal reforming of methane: Performance of a kW scale reformer using pure oxygen as oxidant. Applied Catalysis A: General, 2007, 318, 54-62.	4.3	21
74	Reactor modeling to simulate catalytic partial oxidation and steam reforming of methane. Comparison of temperature profiles and strategies for hot spot minimization. International Journal of Hydrogen Energy, 2007, 32, 1421-1428.	7.1	54
75	Catalytic partial oxidation of methane to synthesis gas over a ruthenium catalyst: the role of the oxidation state. Physical Chemistry Chemical Physics, 2007, 9, 1461.	2.8	47
76	Optically accessible channel reactor for the kinetic investigation of hydrocarbon reforming reactions. Catalysis Today, 2006, 116, 348-353.	4.4	28
77	Link-up of a bench-scale "shift-less―gasoline fuel processor to a polymer electrolyte fuel cell. Journal of Power Sources, 2006, 159, 1034-1041.	7.8	8
78	Low temperature catalytic partial oxidation of methane for gas-to-liquids applications. Applied Catalysis A: General, 2005, 292, 177-188.	4.3	53
79	Critical review of kinetic data for the oxidation of methanol in supercritical water. Journal of Supercritical Fluids, 2005, 34, 249-286.	3.2	138
80	Renewable Production of Methane from Woody Biomass by Catalytic Hydrothermal Gasification. Industrial & Engineering Chemistry Research, 2005, 44, 4543-4551.	3.7	173
81	Fuels for Fuel Cells: Requirements and Fuel Processing. Chimia, 2004, 58, 887-895.	0.6	4
82	Engineering kinetics for hydrothermal oxidation of hazardous organic substances. AICHE Journal, 2002, 48, 1827-1839.	3.6	16
83	Autothermal methanol reforming for hydrogen production in fuel cell applications. Physical Chemistry Chemical Physics, 2001, 3, 289-293.	2.8	136
84	A computational model for supercritical water oxidation of organic toxic wastes. Journal of Environmental Management, 2000, 4, 75-90.	1.7	42
85	The mean oxidation number of carbon (MOC)—a useful concept for describing oxidation processes. Water Research, 2000, 34, 2689-2702.	11.3	81
86	Deactivation of Sewage Sludge by Wet Oxidation (WO) Using the LOPROX Process: A Complete Wastewater Plant/WO System with an Analysis of Wet Oxidation Products. Chemical Engineering and Technology, 1998, 21, 880-885.	1.5	2
87	Inertisierung von Kl¤schlamm durch Naßoxidation (NO) nach dem LOPROX-Verfahren. Chemie-Ingenieur-Technik, 1998, 70, 898-902.	0.8	0