Maximilian Pfau

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2280389/publications.pdf

Version: 2024-02-01

80 2,150 2
papers citations h-i

304743 345221 36
h-index g-index

90 90 all docs citations

90 times ranked 1833 citing authors

#	Article	IF	CITATIONS
1	Blue-light fundus autofluorescence imaging of pigment epithelial detachments. Eye, 2023, 37, 1191-1201.	2.1	O
2	OCT Signs of Early Atrophy in Age-Related Macular Degeneration: Interreader Agreement. Ophthalmology Retina, 2022, 6, 4-14.	2.4	35
3	Visual Dysfunction and Structural Correlates in Sorsby Fundus Dystrophy. American Journal of Ophthalmology, 2022, 234, 274-284.	3.3	8
4	Photoreceptor degeneration in ABCA4-associated retinopathy and its genetic correlates. JCI Insight, 2022, 7, .	5.0	10
5	Scotopic microperimetry: evolution, applications and future directions. Australasian journal of optometry, The, 2022, 105, 793-800.	1.3	6
6	Progression of Age-Related Macular Degeneration Among Individuals Homozygous for Risk Alleles on Chromosome 1 ($\langle i \rangle$ CFH-CFHR5 $\langle i \rangle$) or Chromosome 10 ($\langle i \rangle$ ARMS2/HTRA1 $\langle i \rangle$) or Both. JAMA Ophthalmology, 2022, 140, 252.	2.5	13
7	Intersession Repeatability of Structural Biomarkers in Early and Intermediate Age-Related Macular Degeneration: A MACUSTAR Study Report. Translational Vision Science and Technology, 2022, 11, 27.	2.2	6
8	Re: Trivizki et al. Local Geographic Atrophy Growth Rates Not Influenced by Close Proximity to Non-Exudative Type 1 Macular Neovascularization. , 2022, 63, 10.		0
9	Natural History of the Relative Ellipsoid Zone Reflectivity in Age-Related Macular Degeneration. Ophthalmology Retina, 2022, 6, 1165-1172.	2.4	6
10	Optical Coherence Tomography-Angiography in Geographic Atrophy. Ophthalmologica, 2021, 244, 42-50.	1.9	7
11	Prognostic value of intermediate age-related macular degeneration phenotypes for geographic atrophy progression. British Journal of Ophthalmology, 2021, 105, 239-245.	3.9	17
12	Retinal light sensitivity as outcome measure in recessive Stargardt disease. British Journal of Ophthalmology, 2021, 105, 258-264.	3.9	6
13	Fundus autofluorescence imaging. Progress in Retinal and Eye Research, 2021, 81, 100893.	15.5	57
14	Longitudinal Analysis of Retinal Thickness and Retinal Function in Eyes with Large Drusen Secondary to Intermediate Age-Related Macular Degeneration. Ophthalmology Retina, 2021, 5, 241-250.	2.4	16
15	Fundus-controlled perimetry (microperimetry): Application as outcome measure in clinical trials. Progress in Retinal and Eye Research, 2021, 82, 100907.	15.5	55
16	Inferred retinal sensitivity in recessive Stargardt disease using machine learning. Scientific Reports, 2021, 11, 1466.	3.3	5
17	Al-based structure-function correlation in age-related macular degeneration. Eye, 2021, 35, 2110-2118.	2.1	8
18	NATURAL HISTORY OF QUANTITATIVE AUTOFLUORESCENCE IN INTERMEDIATE AGE-RELATED MACULAR DEGENERATION. Retina, 2021, 41, 694-700.	1.7	8

#	Article	IF	CITATIONS
19	Probabilistic Forecasting of Anti-VEGF Treatment Frequency in Neovascular Age-Related Macular Degeneration. Translational Vision Science and Technology, 2021, 10, 30.	2.2	14
20	Modeling of atrophy size trajectories: variable transformation, prediction and age-of-onset estimation. BMC Medical Research Methodology, 2021, 21, 170.	3.1	2
21	Association of Reading Performance in Geographic Atrophy Secondary to Age-Related Macular Degeneration With Visual Function and Structural Biomarkers. JAMA Ophthalmology, 2021, 139, 1191.	2.5	13
22	Re: Jaffe etÂal.: C5 inhibitor avacincaptad pegol for geographic atrophy due to age-related macular degeneration (Ophthalmology. 2021;128:576–586). Ophthalmology, 2021, 128, e219.	5.2	0
23	Estimation of current and post-treatment retinal function in chronic central serous chorioretinopathy using artificial intelligence. Scientific Reports, 2021, 11, 20446.	3.3	7
24	The Willingness of Patients to Participate in an Eye Donation Registry for Research. Ophthalmologica, 2021, 244, 179-186.	1.9	2
25	MESOPIC AND DARK-ADAPTED TWO-COLOR FUNDUS-CONTROLLED PERIMETRY IN GEOGRAPHIC ATROPHY SECONDARY TO AGE-RELATED MACULAR DEGENERATION. Retina, 2020, 40, 169-180.	1.7	37
26	Type 1 Choroidal Neovascularization Is Associated with Reduced Localized Progression of Atrophy in Age-Related Macular Degeneration. Ophthalmology Retina, 2020, 4, 238-248.	2.4	46
27	Assessment of Exudative Activity of Choroidal Neovascularization in Age-Related Macular Degeneration by OCT Angiography. Ophthalmologica, 2020, 243, 120-128.	1.9	22
28	Prognostic Value of Retinal Layers in Comparison with Other Risk Factors for Conversion of Intermediate Age-related Macular Degeneration. Ophthalmology Retina, 2020, 4, 31-40.	2.4	11
29	Validation of an Automated Quantification of Relative Ellipsoid Zone Reflectivity on Spectral Domain-Optical Coherence Tomography Images. Translational Vision Science and Technology, 2020, 9, 17.	2.2	9
30	Prediction of Function in ABCA4-Related Retinopathy Using Ensemble Machine Learning. Journal of Clinical Medicine, 2020, 9, 2428.	2.4	11
31	Progression of Photoreceptor Degeneration in Geographic Atrophy Secondary to Age-related Macular Degeneration. JAMA Ophthalmology, 2020, 138, 1026.	2.5	58
32	Longitudinal Analysis of Structural and Functional Changes in Presence of Reticular Pseudodrusen Associated With Age-Related Macular Degeneration., 2020, 61, 19.		22
33	Mesopic and Scotopic Light Sensitivity and Its Microstructural Correlates in Pseudoxanthoma Elasticum. JAMA Ophthalmology, 2020, 138, 1272.	2.5	12
34	Determinants of Quality of Life in Geographic Atrophy Secondary to Age-Related Macular Degeneration., 2020, 61, 63.		30
35	Phenotypic Spectrum of the Foveal Configuration and Foveal Avascular Zone in Patients With Alport Syndrome., 2020, 61, 5.		16
36	Progression of Retinopathy Secondary to Maternally Inherited Diabetes and Deafness – Evaluation of Predicting Parameters. American Journal of Ophthalmology, 2020, 213, 134-144.	3.3	16

#	Article	lF	Citations
37	Determinants of Cone and Rod Functions in Geographic Atrophy: Al-Based Structure-Function Correlation. American Journal of Ophthalmology, 2020, 217, 162-173.	3.3	35
38	Detecting vision loss in intermediate age-related macular degeneration: A comparison of visual function tests. PLoS ONE, 2020, 15, e0231748.	2.5	19
39	PROGRESSION OF ABCA4-RELATED RETINOPATHY. Retina, 2020, 40, 2343-2356.	1.7	15
40	PROGNOSTIC VALUE OF SHAPE-DESCRIPTIVE FACTORS FOR THE PROGRESSION OF GEOGRAPHIC ATROPHY SECONDARY TO AGE-RELATED MACULAR DEGENERATION. Retina, 2019, 39, 1527-1540.	1.7	44
41	Artificial intelligence for morphology-based function prediction in neovascular age-related macular degeneration. Scientific Reports, 2019, 9, 11132.	3.3	37
42	Light Sensitivity Within Areas of Geographic Atrophy Secondary to Age-Related Macular Degeneration. , 2019, 60, 3992.		17
43	Determinants of Reading Performance in Eyes with Foveal-Sparing Geographic Atrophy. Ophthalmology Retina, 2019, 3, 201-210.	2.4	18
44	Assessment of Novel Genome-Wide Significant Gene Loci and Lesion Growth in Geographic Atrophy Secondary to Age-Related Macular Degeneration. JAMA Ophthalmology, 2019, 137, 867.	2.5	28
45	Dark-Adapted Two-Color Fundus-Controlled Perimetry in Macular Telangiectasia Type 2., 2019, 60, 1760.		11
46	Mesopic and Dark-Adapted Two-Color Fundus-Controlled Perimetry in Choroidal Neovascularization Secondary to Age-Related Macular Degeneration. Translational Vision Science and Technology, 2019, 8, 7.	2.2	25
47	Retinal Sensitivity Using Microperimetry in Age-Related Macular Degeneration in an Amish Population. Ophthalmic Surgery Lasers and Imaging Retina, 2019, 50, e236-e241.	0.7	14
48	Longitudinal Analysis of Drusen Volume in Intermediate Age-Related Macular Degeneration Using Two Spectral-Domain Optical Coherence Tomography Scan Patterns. Ophthalmologica, 2018, 239, 110-120.	1.9	11
49	QUANTIFICATION OF INTRARETINAL HARD EXUDATES IN EYES WITH DIABETIC RETINOPATHY BY OPTICAL COHERENCE TOMOGRAPHY. Retina, 2018, 38, 231-236.	1.7	10
50	Comparison of Green Versus Blue Fundus Autofluorescence in <i>ABCA4</i> -Related Retinopathy. Translational Vision Science and Technology, 2018, 7, 13.	2.2	29
51	Retest Reliability of Mesopic and Dark-Adapted Microperimetry in Patients With Intermediate Age-Related Macular Degeneration and Age-Matched Controls. , 2018, 59, AMD152.		30
52	Structure-Function Analysis in Patients With Intermediate Age-Related Macular Degeneration. , 2018, 59, 1599.		30
53	Local Progression Kinetics of Geographic Atrophy in Age-Related Macular Degeneration Are Associated With Atrophy Border Morphology. , 2018, 59, AMD12.		10
54	Autofluorescence Imaging. ESASO Course Series, 2018, , 65-87.	0.1	2

#	Article	IF	Citations
55	Mesopic and dark-adapted two-color fundus-controlled perimetry in patients with cuticular, reticular, and soft drusen. Eye, 2018, 32, 1819-1830.	2.1	44
56	Multimodal Imaging Patterns for Development of Central Atrophy Secondary to Age-Related Macular Degeneration., 2018, 59, AMD1.		19
57	Optical Coherence Tomography Angiography in Intermediate Uveitis. American Journal of Ophthalmology, 2018, 194, 35-45.	3.3	46
58	Visual field indices and patterns of visual field deficits in mesopic and dark-adapted two-colour fundus-controlled perimetry in macular diseases. British Journal of Ophthalmology, 2018, 102, 1054-1059.	3.9	22
59	Choroidal Flow Signal in Late-Onset Stargardt Disease and Age-Related Macular Degeneration: An OCT-Angiography Study. , 2018, 59, AMD122.		38
60	Persistent visual loss in dengue fever due to outer retinal damage. Clinical and Experimental Ophthalmology, 2017, 45, 747-749.	2.6	7
61	Test-Retest Reliability of Scotopic and Mesopic Fundus-Controlled Perimetry Using a Modified MAIA (Macular Integrity Assessment) in Normal Eyes. Ophthalmologica, 2017, 237, 42-54.	1.9	34
62	Long-Term Intravitreal Dexamethasone Treatment in Eyes with Pretreated Chronic Diabetic Macular Edema. Journal of Ocular Pharmacology and Therapeutics, 2017, 33, 620-628.	1.4	7
63	Optical coherence tomography angiography in ageâ€related macular degeneration: persistence of vascular network in quiescent choroidal neovascularization. Acta Ophthalmologica, 2017, 95, 428-430.	1.1	10
64	Angio-OCT de la zona avascular foveal en ojos con oclusi \tilde{A}^3 n venosa de la retina. Ophthalmologica, 2017, 238, 39-47.	1.9	0
65	Evaluation of Two Systems for Fundus-Controlled Scotopic and Mesopic Perimetry in Eye with Age-Related Macular Degeneration. Translational Vision Science and Technology, 2017, 6, 7.	2.2	37
66	Combined Fundus Autofluorescence and Near Infrared Reflectance as Prognostic Biomarkers for Visual Acuity in Foveal-Sparing Geographic Atrophy., 2017, 58, BIO61.		36
67	Green-Light Autofluorescence Versus Combined Blue-Light Autofluorescence and Near-Infrared Reflectance Imaging in Geographic Atrophy Secondary to Age-Related Macular Degeneration., 2017, 58, BIO121.		50
68	Structural Changes in Optical Coherence Tomography Underlying Spots of Increased Autofluorescence in the Perilesional Zone of Geographic Atrophy., 2017, 58, 3303.		9
69	Effective Dynamic Range and Retest Reliability of Dark-Adapted Two-Color Fundus-Controlled Perimetry in Patients With Macular Diseases. , 2017, 58, BIO158.		40
70	Quantitative Features of the Choriocapillaris in Healthy Individuals Using Swept-Source Optical Coherence Tomography Angiography. Ophthalmic Surgery Lasers and Imaging Retina, 2017, 48, 623-631.	0.7	42
71	OCT Angiography–Based Detection and Quantification of the Neovascular Network in Exudative AMD. , 2016, 57, 6342.		33
72	Distinct Genetic Risk Profile of the Rapidly Progressing Diffuse-Trickling Subtype of Geographic Atrophy in Age-Related Macular Degeneration (AMD)., 2016, 57, 2463.		22

#	Article	IF	CITATIONS
73	Swept-Source OCT Angiography Imaging of the Foveal Avascular Zone and Macular Capillary Network Density in Diabetic Retinopathy., 2016, 57, 3907.		185
74	Optical Coherence Tomography Angiography of the Foveal Avascular Zone in Retinal Vein Occlusion. Ophthalmologica, 2016, 235, 195-202.	1.9	57
75	Response of Postoperative and Chronic Uveitic Cystoid Macular Edema to a Dexamethasone-Based Intravitreal Implant (Ozurdex). Journal of Ocular Pharmacology and Therapeutics, 2016, 32, 442-450.	1.4	16
76	Optical coherence tomography angiography of the foveal avascular zone in diabetic retinopathy. Graefe's Archive for Clinical and Experimental Ophthalmology, 2016, 254, 1051-1058.	1.9	224
77	Clinical Experience With the First Commercially Available Intraoperative Optical Coherence Tomography System. Ophthalmic Surgery Lasers and Imaging Retina, 2015, 46, 1001-1008.	0.7	35
78	Clinical Outcome after Switching Therapy from Ranibizumab and/or Bevacizumab to Aflibercept in Central Retinal Vein Occlusion. Ophthalmic Research, 2015, 54, 150-156.	1.9	23
79	An Extended Helical Conformation in Domain 3a of Munc18-1 Provides a Template for SNARE (Soluble) Tj ETQq1 Biological Chemistry, 2014, 289, 9639-9650.	1 0.78431 3.4	4 rgBT /Ove 105
80	Repeatability and Discriminatory Power of Chart-Based Visual Function Tests in Individuals With Age-Related Macular Degeneration. JAMA Ophthalmology, 0, , .	2.5	4