
Ana M GonzÃ;lez-ParamÃ;s

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/228028/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Roots and rhizomes of wild Asparagus: Nutritional composition, bioactivity and nanoencapsulation of the most potent extract. Food Bioscience, 2022, 45, 101334.	2.0	6
2	Disclosing the Antioxidant and Neuroprotective Activity of an Anthocyanin-Rich Extract from Sweet Cherry (Prunus avium L.) Using In Vitro and In Vivo Models. Antioxidants, 2022, 11, 211.	2.2	6
3	Protective Effect of Quercetin 3-O-Glucuronide against Cisplatin Cytotoxicity in Renal Tubular Cells. Molecules, 2022, 27, 1319.	1.7	7
4	Obtaining green extracts rich in phenolic compounds from underexploited food by-products using natural deep eutectic solvents. Opportunities and challenges. Sustainable Chemistry and Pharmacy, 2022, 29, 100773.	1.6	28
5	Honey quality parameters, chemical composition and antimicrobial activity in twelve Ecuadorian stingless bees (Apidae: Apinae: Meliponini) tested against multiresistant human pathogens. LWT - Food Science and Technology, 2021, 140, 110737.	2.5	27
6	Novel approaches in anthocyanin research - Plant fortification and bioavailability issues. Trends in Food Science and Technology, 2021, 117, 92-105.	7.8	50
7	Caffeic and Dihydrocaffeic Acids Promote Longevity and Increase Stress Resistance in Caenorhabditis elegans by Modulating Expression of Stress-Related Genes. Molecules, 2021, 26, 1517.	1.7	16
8	Antioxidant and Antimicrobial Influence on Oyster Mushrooms (Pleurotus ostreatus) from Substrate Supplementation of Calcium Silicate. Sustainability, 2021, 13, 5019.	1.6	5
9	Combined effects of irradiation and storage time on the nutritional and chemical parameters of dried <i>Agaricus bisporus</i> Portobello mushroom flour. Journal of Food Science, 2021, 86, 2276-2287.	1.5	7
10	A Case Study on Surplus Mushrooms Production: Extraction and Recovery of Vitamin D2. Agriculture (Switzerland), 2021, 11, 579.	1.4	3
11	Wine, Polyphenols, and Mediterranean Diets. What Else Is There to Say?. Molecules, 2021, 26, 5537.	1.7	29
12	Bioactive compounds, phenolic profile, antioxidant capacity and effectiveness against lipid peroxidation of cell membranes of Mauritia flexuosa L. fruit extracts from three biomes in the Ecuadorian Amazon. Heliyon, 2020, 6, e05211.	1.4	24
13	Influence of Calcium Silicate on the Chemical Properties of Pleurotus ostreatus var. florida (Jacq.) P. Kumm. Journal of Fungi (Basel, Switzerland), 2020, 6, 299.	1.5	7
14	Caenorhabditis elegans as a Model Organism to Evaluate the Antioxidant Effects of Phytochemicals. Molecules, 2020, 25, 3194.	1.7	34
15	Baking Optimization as a Strategy to Extend Shelf-Life through the Enhanced Quality and Bioactive Properties of Pulse-Based Snacks. Molecules, 2020, 25, 3716.	1.7	3
16	Assessment of the In Vivo Antioxidant Activity of an Anthocyanin-Rich Bilberry Extract Using the Caenorhabditis elegans Model. Antioxidants, 2020, 9, 509.	2.2	12
17	Current and future experimental approaches in the study of grape and wine polyphenols interacting gut microbiota. Journal of the Science of Food and Agriculture, 2020, 100, 3789-3802.	1.7	27
18	Protective effect of the medicinal herb infusion "horchata" against oxidative damage in cigarette smokers: An ex vivo study. Food and Chemical Toxicology, 2020, 143, 111538.	1.8	6

#	Article	IF	CITATIONS
19	Pechiche (Vitex cymosa Berteo ex Speng), a Nontraditional Fruit from Ecuador, is a Dietary Source of Phenolic Acids and Nutrient Minerals, in Addition to Efficiently Counteracting the Oxidative-Induced Damage in Human Dermal Fibroblasts. Antioxidants, 2020, 9, 109.	2.2	2
20	Anthocyanins. , 2019, , 10-21.		13
21	Nutritional properties, identification of phenolic compounds, and enzyme inhibitory activities of Feijoa sellowiana leaves. Journal of Food Biochemistry, 2019, 43, e13012.	1.2	8
22	Phytochemical composition and the cholinesterase and xanthine oxidase inhibitory properties of seed extracts from the <i>Washingtonia filifera</i> palm fruit. RSC Advances, 2019, 9, 21278-21287.	1.7	19
23	A comparative study between conventional and non-conventional extraction techniques for the recovery of ergosterol from Agaricus blazei Murrill. Food Research International, 2019, 125, 108541.	2.9	23
24	Flour fortification for nutritional and health improvement: A review. Food Research International, 2019, 125, 108576.	2.9	38
25	Chemical composition and enzyme inhibition of Phytolacca dioica L. seeds extracts. Journal of Enzyme Inhibition and Medicinal Chemistry, 2019, 34, 519-527.	2.5	11
26	Preparation and Characterization of Protocatechuic Acid Sulfates. Molecules, 2019, 24, 307.	1.7	11
27	Anti-inflammatory effect of the medicinal herbal mixture infusion, Horchata, from southern Ecuador against LPS-induced cytotoxic damage in RAW 264.7 macrophages. Food and Chemical Toxicology, 2019, 131, 110594.	1.8	20
28	Phenolic acids, cinnamic acid, and ergosterol as cosmeceutical ingredients: Stabilization by microencapsulation to ensure sustained bioactivity. Microchemical Journal, 2019, 147, 469-477.	2.3	36
29	Plant phenolics as functional food ingredients. Advances in Food and Nutrition Research, 2019, 90, 183-257.	1.5	78
30	Antioxidant Characterization and Biological Effects of Grape Pomace Extracts Supplementation in Caenorhabditis elegans. Foods, 2019, 8, 75.	1.9	22
31	Epicatechin modulates stress-resistance in C. elegans via insulin/IGF-1 signaling pathway. PLoS ONE, 2019, 14, e0199483.	1.1	44
32	Exploring Target Genes Involved in the Effect of Quercetin on the Response to Oxidative Stress in Caenorhabditis elegans. Antioxidants, 2019, 8, 585.	2.2	20
33	Physicochemical characterization and microbiology of wheat and rye flours. Food Chemistry, 2019, 280, 123-129.	4.2	50
34	Effectiveness of gamma and electron beam irradiation as preserving technologies of fresh Agaricus bisporus Portobello: A comparative study. Food Chemistry, 2019, 278, 760-766.	4.2	42
35	The Mechanisms Behind the Biological Activity of Flavonoids. Current Medicinal Chemistry, 2019, 26, 6976-6990.	1.2	41
36	Revalorization of wild <i>Asparagus stipularis</i> Forssk. as a traditional vegetable with nutritional and functional functional properties. Food and Function, 2018, 9, 1578-1586.	2.1	10

#	Article	IF	CITATIONS
37	Apis mellifera vs Melipona beecheii Cuban polifloral honeys: A comparison based on their physicochemical parameters, chemical composition and biological properties. LWT - Food Science and Technology, 2018, 87, 272-279.	2.5	101
38	Sardinian honeys as sources of xanthine oxidase and tyrosinase inhibitors. Food Science and Biotechnology, 2018, 27, 139-146.	1.2	21
39	In vitro antioxidant activity, α-glucosidase inhibitory potential and in vivo protective effect of Asparagus stipularis Forssk aqueous extract against high-fructose diet-induced metabolic syndrome in rats. Journal of Functional Foods, 2018, 47, 521-530.	1.6	11
40	Mushroom-based cosmeceutical ingredients: Microencapsulation and in vitro release profile. Industrial Crops and Products, 2018, 124, 44-52.	2.5	18
41	Evaluation of antioxidant and tyrosinase inhibitory activities ofÂthe extracts of <i>Sarcopoterium spinosum</i> (L.) Spach fruits. Natural Product Research, 2017, 31, 2900-2904.	1.0	4
42	Strawberry consumption improves aging-associated impairments, mitochondrial biogenesis and functionality through the AMP-activated protein kinase signaling cascade. Food Chemistry, 2017, 234, 464-471.	4.2	98
43	Phenolic Composition of Propolis. , 2017, , 99-111.		9
44	Chemical Composition of Honey. , 2017, , 43-82.		32
45	The potential of Ganoderma lucidum extracts as bioactive ingredients in topical formulations, beyond its nutritional benefits. Food and Chemical Toxicology, 2017, 108, 139-147.	1.8	78
46	The protective effect of acerola (Malpighia emarginata) against oxidative damage in human dermal fibroblasts through the improvement of antioxidant enzyme activity and mitochondrial functionality. Food and Function, 2017, 8, 3250-3258.	2.1	36
47	Hydroxycinnamic Acids and Their Derivatives: Cosmeceutical Significance, Challenges and Future Perspectives, a Review. Molecules, 2017, 22, 281.	1.7	246
48	An Integrated View of the Effects of Wine Polyphenols and Their Relevant Metabolites on Gut and Host Health. Molecules, 2017, 22, 99.	1.7	107
49	Strawberry (cv. Romina) Methanolic Extract and Anthocyanin-Enriched Fraction Improve Lipid Profile and Antioxidant Status in HepG2 Cells. International Journal of Molecular Sciences, 2017, 18, 1149.	1.8	45
50	Broad-range potential of Asphodelus microcarpus leaves extract for drug development. BMC Microbiology, 2017, 17, 159.	1.3	18
51	Development of Mushroom-Based Cosmeceutical Formulations with Anti-Inflammatory, Anti-Tyrosinase, Antioxidant, and Antibacterial Properties. Molecules, 2016, 21, 1372.	1.7	68
52	Activation of AMPK/Nrf2 signalling by Manuka honey protects human dermal fibroblasts against oxidative damage by improving antioxidant response and mitochondrial function promoting wound healing. Journal of Functional Foods, 2016, 25, 38-49.	1.6	132
53	Tyrosinase inhibition and antioxidant properties of Asphodelus microcarpus extracts. BMC Complementary and Alternative Medicine, 2016, 16, 453.	3.7	82
54	Strawberry consumption alleviates doxorubicin-induced toxicity by suppressing oxidative stress. Food and Chemical Toxicology, 2016, 94, 128-137.	1.8	44

#	Article	IF	CITATIONS
55	Mushrooms extracts and compounds in cosmetics, cosmeceuticals and nutricosmetics—A review. Industrial Crops and Products, 2016, 90, 38-48.	2.5	134
56	Phenolic composition and antioxidant capacity of yellow and purple-red Ecuadorian cultivars of tree tomato (Solanum betaceum Cav.). Food Chemistry, 2016, 194, 1073-1080.	4.2	69
57	Dietary and microbiome factors determine longevity in Caenorhabditis elegans. Aging, 2016, 8, 1513-1539.	1.4	18
58	A Pilot Study of the Photoprotective Effects of Strawberry-Based Cosmetic Formulations on Human Dermal Fibroblasts. International Journal of Molecular Sciences, 2015, 16, 17870-17884.	1.8	19
59	Flavan hetero-dimers in the Cymbopogon citratus infusion tannin fraction and their contribution to the antioxidant activity. Food and Function, 2015, 6, 932-937.	2.1	15
60	Polyphenol-Rich Strawberry Extract Protects Human Dermal Fibroblasts against Hydrogen Peroxide Oxidative Damage and Improves Mitochondrial Functionality. Molecules, 2014, 19, 7798-7816.	1.7	87
61	One-month strawberry-rich anthocyanin supplementation ameliorates cardiovascular risk, oxidative stress markers and platelet activation in humans. Journal of Nutritional Biochemistry, 2014, 25, 289-294.	1.9	286
62	Strawberry intake increases blood fluid, erythrocyte and mononuclear cell defenses against oxidative challenge. Food Chemistry, 2014, 156, 87-93.	4.2	48
63	An anthocyanin-rich strawberry extract protects against oxidative stress damage and improves mitochondrial functionality in human dermal fibroblasts exposed to an oxidizing agent. Food and Function, 2014, 5, 1939.	2.1	105
64	Doxorubicin-Induced Oxidative Stress in Rats Is Efficiently Counteracted by Dietary Anthocyanin Differently Enriched Strawberry (<i>Fragaria</i> × <i>ananassa</i> Duch.). Journal of Agricultural and Food Chemistry, 2014, 62, 3935-3943.	2.4	46
65	Deglycosylation is a key step in biotransformation and lifespan effects of quercetin-3-O-glucoside in Caenorhabditis elegans. Pharmacological Research, 2013, 76, 41-48.	3.1	47
66	Study of Zalema Grape Pomace: Phenolic Composition and Biological Effects in Caenorhabditis elegans. Journal of Agricultural and Food Chemistry, 2013, 61, 5114-5121.	2.4	44
67	Photoprotective Potential of Strawberry (Fragaria×ananassa) Extract against UV-A Irradiation Damage on Human Fibroblasts. Journal of Agricultural and Food Chemistry, 2012, 60, 2322-2327.	2.4	94
68	Oxidative Status of Stressed Caenorhabditis elegans Treated with Epicatechin. Journal of Agricultural and Food Chemistry, 2012, 60, 8911-8916.	2.4	47
69	Phenolics from monofloral honeys protect human erythrocyte membranes against oxidative damage. Food and Chemical Toxicology, 2012, 50, 1508-1516.	1.8	134
70	Influence of catechins and their methylated metabolites on lifespan and resistance to oxidative and thermal stress of Caenorhabditis elegans and epicatechin uptake. Food Research International, 2012, 46, 514-521.	2.9	47
71	Different cardiovascular protective effects of quercetin administered orally or intraperitoneally in spontaneously hypertensive rats. Food and Function, 2012, 3, 643.	2.1	43
72	Characterization of Sulfated Quercetin and Epicatechin Metabolites. Journal of Agricultural and Food Chemistry, 2012, 60, 3592-3598.	2.4	30

#	Article	IF	CITATIONS
73	Extraction and Isolation of Phenolic Compounds. Methods in Molecular Biology, 2012, 864, 427-464.	0.4	55
74	In vitroevaluation of the antioxidant and anti-inflammatory activities of sulphated metabolites of catechins Evaluaciónin vitrode las actividades antioxidante y antiinflamatoria de metabolitos sulfatados de catequinas. CYTA - Journal of Food, 2011, 9, 257-264.	0.9	6
75	Effects of O-methylated metabolites of quercetin on oxidative stress, thermotolerance, lifespan and bioavailability on Caenorhabditis elegans. Food and Function, 2011, 2, 445.	2.1	68
76	Antioxidant properties of major metabolites of quercetin. European Food Research and Technology, 2011, 232, 103-111.	1.6	64
77	Strawberry Polyphenols Attenuate Ethanol-Induced Gastric Lesions in Rats by Activation of Antioxidant Enzymes and Attenuation of MDA Increase. PLoS ONE, 2011, 6, e25878.	1.1	166
78	Antioxidant evaluation of O-methylated metabolites of catechin, epicatechin and quercetin. Journal of Pharmaceutical and Biomedical Analysis, 2010, 51, 443-449.	1.4	147
79	Antioxidant Characterization of Native Monofloral Cuban Honeys. Journal of Agricultural and Food Chemistry, 2010, 58, 9817-9824.	2.4	97
80	A multi-year survey of organic disinfection by-products in drinking waters of Castilla y León, Spain. The need and difficulty to comply with the legal limit of 2009. Journal of Environmental Monitoring, 2010, 12, 200-207.	2.1	6
81	A Role for Differential Glycoconjugation in the Emission of Phenylpropanoid Volatiles from Tomato Fruit Discovered Using a Metabolic Data Fusion Approach. Plant Physiology, 2009, 152, 55-70.	2.3	86
82	Preparation and Characterization of Catechin Sulfates, Glucuronides, and Methylethers with Metabolic Interest. Journal of Agricultural and Food Chemistry, 2009, 57, 1231-1238.	2.4	54
83	Glucuronidated and sulfated metabolites of the flavonoid quercetin prevent endothelial dysfunction but lack direct vasorelaxant effects in rat aorta. Atherosclerosis, 2009, 204, 34-39.	0.4	108
84	Preparation of quercetin glucuronides and characterization by HPLC–DAD–ESI/MS. European Food Research and Technology, 2008, 227, 1069-1076.	1.6	54
85	Structural and chromatic characterization of a new Malvidin 3-glucoside–vanillyl–catechin pigment. Food Chemistry, 2007, 102, 1344-1351.	4.2	33
86	Botanical origin of monovarietal dark honeys (from heather, holm oak, pyrenean oak and sweet) Tj ETQq0 0 0 rgBT Technology, 2007, 226, 87-92.	[/Overloc 1.6	k 10 Tf 50 2 25
87	New Flavanolâ~'Anthocyanin Condensed Pigments and Anthocyanin Composition in Guatemalan Beans (Phaseolusspp.). Journal of Agricultural and Food Chemistry, 2006, 54, 536-542.	2.4	35
88	Natural occurrence of free anthocyanin aglycones in beans (Phaseolus vulgaris L.). Food Chemistry, 2006, 94, 448-456.	4.2	50
89	Flavanol–anthocyanin condensed pigments in plant extracts. Food Chemistry, 2006, 94, 428-436.	4.2	89
90	HPLC-fluorimetric method for analysis of amino acids in products of the hive (honey and bee-pollen). Food Chemistry, 2006, 95, 148-156.	4.2	147

Ana M GonzÃilez-ParamÃis

#	Article	IF	CITATIONS
91	A new vinylpyranoanthocyanin pigment occurring in aged red wine. Food Chemistry, 2006, 97, 689-695.	4.2	63
92	Polyphenolic profile characterization ofAgrimonia eupatoria L. by HPLC with different detection devices. Biomedical Chromatography, 2006, 20, 88-94.	0.8	58
93	Isolation and structural characterization of new anthocyanin-alkyl-catechin pigments. Food Chemistry, 2005, 90, 81-87.	4.2	32
94	Characterisation of polyphenols by HPLC-PAD-ESI/MS and antioxidant activity inEquisetum telmateia. Phytochemical Analysis, 2005, 16, 380-387.	1.2	23
95	Screening of Portisins (Vinylpyranoanthocyanin Pigments) in Port Wine by LC/DAD-MS. Food Science and Technology International, 2005, 11, 353-358.	1.1	19
96	Distribution and Contents of Phenolic Compounds in Eighteen Scandinavian Berry Species. Journal of Agricultural and Food Chemistry, 2004, 52, 4477-4486.	2.4	310
97	Liquid chromatographic–mass spectrometric analysis of anthocyanin composition of dark blue bee pollen from Echium plantagineum. Journal of Chromatography A, 2004, 1054, 205-210.	1.8	65
98	Formation of new anthocyanin-alkyl/aryl-flavanol pigments in model solutions. Analytica Chimica Acta, 2004, 513, 215-221.	2.6	35
99	Structural Characterization of New Malvidin 3-Glucosideâ °Catechin Aryl/Alkyl-Linked Pigments. Journal of Agricultural and Food Chemistry, 2004, 52, 5519-5526.	2.4	40
100	Simultaneous Immunoaffinity Column Cleanup and HPLC Analysis of Aflatoxins and Ochratoxin A in Spanish Bee Pollen. Journal of Agricultural and Food Chemistry, 2004, 52, 7235-7239.	2.4	64
101	Flavanol Content and Antioxidant Activity in Winery Byproducts. Journal of Agricultural and Food Chemistry, 2004, 52, 234-238.	2.4	171
102	Isolation and Structural Characterization of New Acylated Anthocyaninâ^'Vinylâ^'Flavanol Pigments Occurring in Aging Red Wines. Journal of Agricultural and Food Chemistry, 2003, 51, 277-282.	2.4	102
103	Geographical discrimination of honeys by using mineral composition and common chemical quality parameters. Journal of the Science of Food and Agriculture, 2000, 80, 157-165.	1.7	98
104	Geographical discrimination of honeys through the employment of sugar patterns and common chemical quality parameters. European Food Research and Technology, 2000, 210, 437-444.	1.6	49
105	Optimization of the capillary gas chromatographic analysis of mono- and oligosaccharides in honeys. Chromatographia, 1999, 50, 461-469.	0.7	18