
Fujie Tang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2280195/publications.pdf Version: 2024-02-01

FILLE TANC

#	Article	IF	CITATIONS
1	Microscopic Structure of Ice Surface Viewed through Sum Frequency Generation Spectroscopy. , 2022, , 139-171.		1
2	Convert Widespread Paraelectric Perovskite to Ferroelectrics. Physical Review Letters, 2022, 128, .	7.8	5
3	Many-body effects in the X-ray absorption spectra of liquid water. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2201258119.	7.1	11
4	Polarization-Dependent Heterodyne-Detected Sum-Frequency Generation Spectroscopy as a Tool to Explore Surface Molecular Orientation and Ãngström-Scale Depth Profiling. Journal of Physical Chemistry B, 2022, 126, 6113-6124.	2.6	11
5	Nuclear quantum effects on the quasiparticle properties of the chloride anion aqueous solution within the GW approximation. Physical Review B, 2021, 104, .	3.2	6
6	Modeling Liquid Water by Climbing up Jacob's Ladder in Density Functional Theory Facilitated by Using Deep Neural Network Potentials. Journal of Physical Chemistry B, 2021, 125, 11444-11456.	2.6	40
7	Isotope effects in x-ray absorption spectra of liquid water. Physical Review B, 2020, 102, .	3.2	6
8	Interface enhanced functionalities in oxide superlattices under mechanical and electric boundary conditions. Npj Computational Materials, 2020, 6, .	8.7	9
9	Molecular Structure and Modeling of Water–Air and Ice–Air Interfaces Monitored by Sum-Frequency Generation. Chemical Reviews, 2020, 120, 3633-3667.	47.7	97
10	Probing ferroelectricity by x-ray absorption spectroscopy in molecular crystals. Physical Review Materials, 2020, 4, .	2.4	4
11	Accessing the Accuracy of Density Functional Theory through Structure and Dynamics of the Water–Air Interface. Journal of Physical Chemistry Letters, 2019, 10, 4914-4919.	4.6	43
12	Adsorption Structure and Coverage-Dependent Orientation Analysis of Sub-Monolayer Acetonitrile on TiO ₂ (110). Journal of Physical Chemistry C, 2019, 123, 17915-17924.	3.1	6
13	Sun <i>etÂal.</i> Reply:. Physical Review Letters, 2019, 123, 099602.	7.8	1
14	Structures and Dynamics of Interfacial Water. Springer Theses, 2019, , .	0.1	0
15	Structure and Dynamics of Water-TiO2 Interface. Springer Theses, 2019, , 79-90.	0.1	0
16	Orientational Distribution of Free O–H Groups of Interfacial Water. Springer Theses, 2019, , 41-56.	0.1	0
17	Structure and Dynamics of the Ice-Air Interface. Springer Theses, 2019, , 57-78.	0.1	0
18	Definition of Free O–H Group at the Air–Water Interface. Springer Theses, 2019, , 23-39.	0.1	0

Fujie Tang

#	Article	IF	CITATIONS
19	Definition of Free O–H Groups of Water at the Air–Water Interface. Journal of Chemical Theory and Computation, 2018, 14, 357-364.	5.3	46
20	Orientational Distribution of Free O-H Groups of Interfacial Water is Exponential. Physical Review Letters, 2018, 121, 246101.	7.8	49
21	Molecular Insight into the Slipperiness of Ice. Journal of Physical Chemistry Letters, 2018, 9, 2838-2842.	4.6	63
22	Chemisorbed and Physisorbed Water at the TiO ₂ /Water Interface. Journal of Physical Chemistry Letters, 2017, 8, 2195-2199.	4.6	89
23	π ⁺ –π ⁺ stacking of imidazolium cations enhances molecular layering of room temperature ionic liquids at their interfaces. Physical Chemistry Chemical Physics, 2017, 19, 2850-2856.	2.8	42
24	Excess Hydrogen Bond at the Ice-Vapor Interface around 200ÂK. Physical Review Letters, 2017, 119, 133003.	7.8	45
25	Observation and Identification of a New OH Stretch Vibrational Band at the Surface of Ice. Journal of Physical Chemistry Letters, 2017, 8, 3656-3660.	4.6	53
26	Vibrational Spectroscopy and Dynamics of Water. Chemical Reviews, 2016, 116, 7590-7607.	47.7	300