
Fatemeh Rajabi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2279413/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Efficient Synthesis of Dihydropyrimidines Using a Highly Ordered Mesoporous Functionalized Pyridinium Organosilica. Catalysts, 2022, 12, 350.	3.5	3
2	The recent development of donepezil structure-based hybrids as potential multifunctional anti-Alzheimer's agents: highlights from 2010 to 2020. RSC Advances, 2021, 11, 30781-30797.	3.6	24
3	Supported phosphine free bis-NHC palladium pincer complex: An efficient reusable nanocatalyst for Suzuki-Miyaura coupling reaction. Molecular Catalysis, 2021, 515, 111928.	2.0	5
4	Highly ordered mesoporous functionalized pyridinium protic ionic liquid framework as a highly efficient catalytic system in chemoselective thioacetalization of carbonyl compounds under solvent-free conditions. Molecular Catalysis, 2021, 515, 111919.	2.0	4
5	Highly efficient and selective aqueous aerobic oxidation of sulfides to sulfoxides or sulfones catalyzed by tungstate-functionalized nanomaterial. Molecular Catalysis, 2021, 515, 111931.	2.0	5
6	Highly ordered mesoporous hybrid silica functionalized with ionic liquid framework supported copper and its application in the oxidation of alcohols. Molecular Catalysis, 2021, 516, 111898.	2.0	3
7	Cytosine Palladium Complex Supported on Ordered Mesoporous Silica as Highly Efficient and Reusable Nanocatalyst for One-Pot Oxidative Esterification of Aldehydes. Catalysts, 2021, 11, 1482.	3.5	3
8	Highly ordered mesoporous functionalized pyridinium protic ionic liquids framework as efficient system in esterification reactions for biofuels production. Molecular Catalysis, 2020, 498, 111238.	2.0	11
9	Tungstate ion (WO42-) confined in hydrophilic/hydrophobic nanomaterials functionalized brönsted acidic ionic liquid as highly active catalyst in the selective aerobic oxidation of alcohols in water. Molecular Catalysis, 2020, 497, 111202.	2.0	4
10	Synthesis and Characterization of Novel Pyridine Periodic Mesoporous Organosilicas and Its Catalytic Activity in the Knoevenagel Condensation Reaction. Materials, 2020, 13, 1097.	2.9	12
11	A BrÃ,nsted acidic, ionic liquid containing, heteropolyacid functionalized polysiloxane network as a highly selective catalyst for the esterification of dicarboxylic acids. Green Chemistry, 2020, 22, 4438-4444.	9.0	28
12	Solvent-Free Preparation of 1,8-Dioxo-Octahydroxanthenes Employing Iron Oxide Nanomaterials. Materials, 2019, 12, 2386.	2.9	16
13	Aqueous synthesis of 1,8-dioxo-octahydroxanthenes using supported cobalt nanoparticles as a highly efficient and recyclable nanocatalyst. Catalysis Communications, 2019, 120, 95-100.	3.3	24
14	Oneâ€pot Synthesis of Novel 3â€(Aryl(heteroarylamino)methyl)â€2 <i>H</i> â€chromenâ€2â€one Derivatives. Jo of Heterocyclic Chemistry, 2018, 55, 2971-2976.	urnal 2.6	7
15	Copper Tridentate Schiff Base Complex Supported on SBA-15 as Efficient Nanocatalyst for Three-Component Reactions under Solventless Conditions. Materials, 2018, 11, 2458.	2.9	15
16	Cytosine Palladium Hybrid Complex Immobilized on SBAâ€15 as Efficient Heterogeneous Catalyst for the Aqueous Suzukiâ€Miyaura Coupling. ChemistrySelect, 2018, 3, 6102-6106.	1.5	5
17	Cytosine-functionalized SBA-15 mesoporous nanomaterials: Synthesis, characterization and catalytic applications. Microporous and Mesoporous Materials, 2017, 253, 64-70.	4.4	31
18	Highly ordered Nanomaterial Functionalized Copper Schiff Base Framework: Synthesis, Characterization, and Hydrogen Peroxide Decomposition Performance. Catalysts, 2017, 7, 216.	3.5	6

Гатемен Rајаві

#	Article	IF	CITATIONS
19	Solvent-Free Esterification of Carboxylic Acids Using Supported Iron Oxide Nanoparticles as an Efficient and Recoverable Catalyst. Materials, 2016, 9, 557.	2.9	22
20	Electrostatic Grafting of a Palladium Nâ€Heterocyclic Carbene Catalyst on a Periodic Mesoporous Organosilica and its Application in the Suzuki–Miyaura Reaction. ChemCatChem, 2015, 7, 3513-3518.	3.7	17
21	An Efficient and Recyclable Nanoparticle-Supported Cobalt Catalyst for Quinoxaline Synthesis. Molecules, 2015, 20, 20709-20718.	3.8	13
22	An Efficient Synthesis of Coumarin Derivatives Using a SBA-15 Supported Cobalt(II) Nanocatalyst. Catalysis Letters, 2015, 145, 1621-1625.	2.6	20
23	An Efficient and Green Synthesis of Benzimidazole Derivatives Using SBA-15 Supported Cobalt Nanocatalysts. Catalysis Letters, 2015, 145, 1566-1570.	2.6	31
24	One-Pot Green Synthesis of Novel Polysubstituted 1,2-Dihydronaphtho[2,1-b]furans. Synthetic Communications, 2015, 45, 1311-1320.	2.1	10
25	Oxidative esterification of alcohols and aldehydes using supported iron oxide nanoparticle catalysts. Catalysis Communications, 2015, 59, 101-103.	3.3	25
26	Supported cobalt oxide nanoparticles as efficient catalyst in esterification and amidation reactions. Catalysis Communications, 2015, 59, 122-126.	3.3	20
27	An Efficient Palladium Nâ€Heterocyclic Carbene Catalyst Allowing the Suzuki–Miyaura Cross oupling of Aryl Chlorides and Arylboronic Acids at Room Temperature in Aqueous Solution. Advanced Synthesis and Catalysis, 2014, 356, 1873-1877.	4.3	88
28	An efficient renewable-derived surfactant for aqueous esterification reactions. RSC Advances, 2014, 4, 5152.	3.6	15
29	Solventless acetylation of alcohols and phenols catalyzed by supported iron oxide nanoparticles. Catalysis Communications, 2014, 45, 129-132.	3.3	22
30	Synthesis and characterization of a 4-nitrophenyl functionalized NHC ligand and its palladium(II) complex. Journal of Organometallic Chemistry, 2013, 744, 101-107.	1.8	10
31	Aqueous oxidation of alcohols catalysed by recoverable iron oxide nanoparticles supported on aluminosilicates. Green Chemistry, 2013, 15, 1232.	9.0	43
32	Supported iron oxide nanoparticles: Recoverable and efficient catalyst for oxidative S-S coupling of thiols to disulfides. Catalysis Communications, 2013, 40, 13-17.	3.3	48
33	Efficient Roomâ€Temperature <i>Oâ€</i> Silylation of Alcohols Using a SBAâ€15â€Supported Cobalt(II) Nanocatalyst. Chemistry and Biodiversity, 2012, 9, 1823-1828.	2.1	8
34	Unprecedented Selective Oxidation of Styrene Derivatives using a Supported Iron Oxide Nanocatalyst in Aqueous Medium. Advanced Synthesis and Catalysis, 2012, 354, 1707-1711.	4.3	72
35	A versatile supported cobalt(ii) complex for heterogeneously catalysed processes: conventional vs. microwave irradiation protocols. Catalysis Science and Technology, 2011, 1, 1051.	4.1	11
36	A silica supported cobalt (II) Salen complex as efficient and reusable catalyst for the selective aerobic oxidation of ethyl benzene derivatives. Catalysis Communications, 2011, 12, 510-513.	3.3	67

#	Article	IF	CITATIONS
37	Heterogeneously catalysed Strecker-type reactions using supported Co(ii) catalysts: microwave vs. conventional heating. Green Chemistry, 2011, 13, 3282.	9.0	35
38	Efficient and Highly Selective Aqueous Oxidation of Sulfides to Sulfoxides at Room Temperature Catalysed by Supported Iron Oxide Nanoparticles on SBAâ€15. Advanced Synthesis and Catalysis, 2011, 353, 2060-2066.	4.3	77