John M Halley

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2279295/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	â€~Fly to a Safer North': Distributional Shifts of the Orchid Ophrys insectifera L. Due to Climate Change. Biology, 2022, 11, 497.	2.8	3
2	An Orchid in Retrograde: Climate-Driven Range Shift Patterns of Ophrys helenae in Greece. Plants, 2021, 10, 470.	3.5	11
3	Sacred natural sites and biodiversity conservation: a systematic review. Biodiversity and Conservation, 2021, 30, 3747-3762.	2.6	17
4	SARS-CoV-2 mutational cascades and the risk of hyper-exponential growth. Microbial Pathogenesis, 2021, 161, 105237.	2.9	10
5	The Dynamic Hypercube as a Niche Community Model. Frontiers in Ecology and Evolution, 2021, 9, .	2.2	0
6	Extinction risk and threats to plants and fungi. Plants People Planet, 2020, 2, 389-408.	3.3	242
7	What goes up must come down – why high fecundity orchids challenge conservation beliefs. Biological Conservation, 2020, 252, 108835.	4.1	5
8	When nature meets the divine: effect of prohibition regimes on the structure and tree species composition of sacred forests in northern Greece. Web Ecology, 2020, 20, 53-86.	1.6	5
9	Metagenomic Characterization Reveals Pronounced Seasonality in the Diversity and Structure of the Phyllosphere Bacterial Community in a Mediterranean Ecosystem. Microorganisms, 2019, 7, 518.	3.6	13
10	Implications of salep collection for the conservation of the Elder-flowered orchid (Dactylorhiza) Tj ETQq0 0 0 rgB1	[/Qyerlock 2.1	2 10 Tf 50 38 13
11	How survival curves affect populations' vulnerability to climate change. PLoS ONE, 2018, 13, e0203124.	2.5	22
12	Campanula lingulata populations on Mt. Olympus, Greece: where's the "abundant centre�. Journal of Biological Research, 2017, 24, 1.	2.1	9
13	Extinction debt in plant communities: where are we now?. Journal of Vegetation Science, 2017, 28, 459-461.	2.2	14
14	A forecast for extinction debt in the presence of speciation. Journal of Theoretical Biology, 2017, 415, 48-52.	1.7	3
15	Targeted habitat restoration can reduce extinction rates in fragmented forests. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 9635-9640.	7.1	127

16	Religion and the Management of the Commons. The Sacred Forests of Epirus. World Terraced Landscapes: History, Environment, Quality of Life Environmental History, 2016, , 283-302.	0.3	5
17	Dynamics of extinction debt across five taxonomic groups. Nature Communications, 2016, 7, 12283.	12.8	87

¹⁸Terrestrial basking sea turtles are responding to spatio-temporal sea surface temperature patterns.2.31618Biology Letters, 2015, 11, 20140744.2.316

JOHN M HALLEY

#	Article	IF	CITATIONS
19	Extinction debt and the species–area relationship: a neutral perspective. Global Ecology and Biogeography, 2014, 23, 113-123.	5.8	50
20	The impact of forest encroachment after agricultural land abandonment on passerine bird communities: The case of Greece. Journal for Nature Conservation, 2014, 22, 157-165.	1.8	36
21	Comment on "Extinction Debt and Windows of Conservation Opportunity in the Brazilian Amazon". Science, 2013, 339, 271-271.	12.6	10
22	Species–area relationships and extinction forecasts. Annals of the New York Academy of Sciences, 2013, 1286, 50-61.	3.8	25
23	Where did the fires burn in Peloponnisos, Greece the summer of 2007? Evidence for a synergy of fuel and weather. Agricultural and Forest Meteorology, 2012, 156, 41-53.	4.8	136
24	Nonparametric testing of variability and trend in some climatic records. Climatic Change, 2011, 109, 549-568.	3.6	10
25	Neutral theory as a predictor of avifaunal extinctions after habitat loss. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 2316-2321.	7.1	84
26	Long-Term Climate Forcing in Loggerhead Sea Turtle Nesting. PLoS ONE, 2011, 6, e19043.	2.5	58
27	Using models with long-term persistence to interpret the rapid increase of Earth's temperature. Physica A: Statistical Mechanics and Its Applications, 2009, 388, 2492-2502.	2.6	12
28	Achieving success with small, translocated mammal populations. Conservation Letters, 2009, 2, 254-262.	5.7	59
29	The scale of analysis determines the spatial pattern of woody species diversity in the Mediterranean environment. Plant Ecology, 2008, 196, 143-151.	1.6	24
30	Dispersal of Amazonian birds in continuous and fragmented forest. Ecology Letters, 2007, 10, 219-229.	6.4	193
31	SOCIALLY INDUCED RED GROUSE POPULATION CYCLES NEED ABRUPT TRANSITIONS BETWEEN TOLERANCE AND AGGRESSION. Ecology, 2005, 86, 1883-1893.	3.2	14
32	The implications of increasing variability of fish landings. Fish and Fisheries, 2005, 6, 266-276.	5.3	21
33	THE INCREASING IMPORTANCE OF 1/f-NOISES AS MODELS OF ECOLOGICAL VARIABILITY. Fluctuation and Noise Letters, 2004, 04, R1-R26.	1.5	68
34	Population-level mechanisms for reddened spectra in ecological time series. Journal of Animal Ecology, 2003, 72, 698-702.	2.8	29
35	Accuracy of fractal dimension estimates for small samples of ecological distributions. Landscape Ecology, 2002, 17, 281-297.	4.2	19
36	Flowering phenology of Campanula on Mt Olympos, Greece. Ecography, 2001, 24, 696-706.	4.5	58

JOHN M HALLEY

#	Article	IF	CITATIONS
37	1/ <i>F</i> NOISE: AN APPROPRIATE STOCHASTIC PROCESS FOR ECOLOGY , 2001, , .		1
38	Extinction Risk and the 1/f Family of Noise Models. Theoretical Population Biology, 1999, 56, 215-230.	1.1	106
39	Extinction Rate of a Population under both Demographic and Environmental Stochasticity. Theoretical Population Biology, 1998, 53, 1-15.	1.1	70
40	Ecology, evolution and 1f-noise. Trends in Ecology and Evolution, 1996, 11, 33-37.	8.7	409
41	The Spatial Population Dynamics of Insects Exploiting a Patchy Food Resource: A Model Study of Local Persistence. Journal of Applied Ecology, 1996, 33, 439.	4.0	23