Ines C Gonçalves

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2279216/publications.pdf Version: 2024-02-01

INES C CONÃ8ALVES

#	Article	IF	CITATIONS
1	Recent advances on bioprinting of hydrogels containing carbon materials. Materials Today Chemistry, 2022, 23, 100617.	3.5	11
2	Carbon nanomaterials for phototherapy of cancer and microbial infections. Carbon, 2022, 190, 194-244.	10.3	24
3	Using Graphene-Based Materials for Stiff and Strong Poly(ethylene glycol) Hydrogels. International Journal of Molecular Sciences, 2022, 23, 2312.	4.1	7
4	Graphene-based materials: the key for the successful application of pHEMA as a blood-contacting device. Biomaterials Science, 2021, 9, 3362-3377.	5.4	14
5	Graphene Oxide Topical Administration: Skin Permeability Studies. Materials, 2021, 14, 2810.	2.9	11
6	Graphene Oxide Coating Improves the Mechanical and Biological Properties of Decellularized Umbilical Cord Arteries. ACS Applied Materials & Interfaces, 2021, 13, 32662-32672.	8.0	10
7	Graphene films irradiated with safe low-power NIR-emitting diodes kill multidrug resistant bacteria. Carbon, 2021, 180, 10-21.	10.3	10
8	Incorporation of graphene oxide into poly(É›-caprolactone) 3D printed fibrous scaffolds improves their antimicrobial properties. Materials Science and Engineering C, 2020, 109, 110537.	7.3	28
9	Carbon Biomaterials. , 2020, , 327-360.		Ο
10	Near-Infrared Radiation-Based Mild Photohyperthermia Therapy of Non-Melanoma Skin Cancer with PEGylated Reduced Nanographene Oxide. Polymers, 2020, 12, 1840.	4.5	23
11	Graphene Surfaces Interaction with Proteins, Bacteria, Mammalian Cells, and Blood Constituents: The Impact of Graphene Platelet Oxidation and Thickness. ACS Applied Materials & Interfaces, 2020, 12, 21020-21035.	8.0	34
12	Orally administrated chitosan microspheres bind Helicobacter pylori and decrease gastric infection in mice. Acta Biomaterialia, 2020, 114, 206-220.	8.3	19
13	Exposure of Smaller and Oxidized Graphene on Polyurethane Surface Improves its Antimicrobial Performance. Nanomaterials, 2020, 10, 349.	4.1	19
14	Graphene oxide-reinforced poly(2-hydroxyethyl methacrylate) hydrogels with extreme stiffness and high-strength. Composites Science and Technology, 2019, 184, 107819.	7.8	26
15	Surface Grafted MSI-78A Antimicrobial Peptide has High Potential for Gastric Infection Management. Scientific Reports, 2019, 9, 18212.	3.3	21
16	Fabrication and antimicrobial performance of surfaces integrating graphene-based materials. Carbon, 2018, 132, 709-732.	10.3	70
17	Lipid nanoparticles to counteract gastric infection without affecting gut microbiota. European Journal of Pharmaceutics and Biopharmaceutics, 2018, 127, 378-386.	4.3	31
18	Biocompatible reinforcement of poly(Lactic acid) with graphene nanoplatelets. Polymer Composites, 2018, 39, E308.	4.6	35

INES C GONçALVES

#	Article	IF	CITATIONS
19	Antimicrobial graphene nanoplatelets coatings for silicone catheters. Carbon, 2018, 139, 635-647.	10.3	48
20	Docosahexaenoic acid loaded lipid nanoparticles with bactericidal activity against Helicobacter pylori. International Journal of Pharmaceutics, 2017, 519, 128-137.	5.2	47
21	Poly(lactic acid) Composites Containing Carbon-Based Nanomaterials: A Review. Polymers, 2017, 9, 269.	4.5	109
22	In vitro interaction of polymeric biomaterials with cells. , 2017, , 285-315.		3
23	Polymer surface adsorption as a strategy to improve the biocompatibility of graphene nanoplatelets. Colloids and Surfaces B: Biointerfaces, 2016, 146, 818-824.	5.0	39
24	Effect of biodegradation on thermo-mechanical properties and biocompatibility of poly(lactic) Tj ETQq0 0 0 rgBT	Oyerlock	2 10 Tf 50 542
25	Bacteria-targeted biomaterials: Glycan-coated microspheres to bind Helicobacter pylori. Acta Biomaterialia, 2016, 33, 40-50.	8.3	15
26	Smaller particle size and higher oxidation improves biocompatibility of graphene-based materials. Carbon, 2016, 99, 318-329.	10.3	62
27	The potential utility of chitosan micro/nanoparticles in the treatment of gastric infection. Expert Review of Anti-Infective Therapy, 2014, 12, 981-992.	4.4	49
28	Modulation of stability and mucoadhesive properties of chitosan microspheres for therapeutic gastric application. International Journal of Pharmaceutics, 2013, 454, 116-124.	5.2	53
29	Bacterial-binding chitosan microspheres for gastric infection treatment and prevention. Acta Biomaterialia, 2013, 9, 9370-9378.	8.3	29
30	Biocompatibility of poly(lactic acid) with incorporated graphene-based materials. Colloids and Surfaces B: Biointerfaces, 2013, 104, 229-238.	5.0	136
31	Graphene-based materials biocompatibility: A review. Colloids and Surfaces B: Biointerfaces, 2013, 111, 188-202.	5.0	470
32	Effect of gastric environment on Helicobacter pylori adhesion to a mucoadhesive polymer. Acta Biomaterialia, 2013, 9, 5208-5215.	8.3	37
33	The effect of octadecyl chain immobilization on the hemocompatibility of poly (2-hydroxyethyl) Tj ETQq1 1 0.784	4314 rgBT 11.4	- /Overlock 10
34	Platelet and leukocyte adhesion to albumin binding self-assembled monolayers. Journal of Materials Science: Materials in Medicine, 2011, 22, 2053-2063.	3.6	20
35	Effect of surface chemistry on bacterial adhesion, viability, and morphology. Journal of Biomedical Materials Research - Part A, 2011, 99A, 344-353.	4.0	49
36	Adhesion of human leukocytes on mixtures of hydroxyl―and methylâ€ŧerminated selfâ€∎ssembled monolayers: Effect of blood protein adsorption. Journal of Biomedical Materials Research - Part A, 2010, 93A, 12-19.	4.0	11

#	Article	IF	CITATIONS
37	Selective protein adsorption modulates platelet adhesion and activation to oligo(ethylene) Tj ETQq1 1 0.784314 Research - Part A, 2009, 89A, 642-653.	rgBT /Ove 4.0	rlock 10 Tf 22
38	Protein adsorption and clotting time of pHEMA hydrogels modified with C18 ligands to adsorb albumin selectively and reversibly. Biomaterials, 2009, 30, 5541-5551.	11.4	32
39	Adsorption of fluorobenzene onto granular activated carbon: Isotherm and bioavailability studies. Bioresource Technology, 2007, 98, 3424-3430.	9.6	34
40	Fibrinogen adsorption, platelet adhesion and activation on mixed hydroxyl-/methyl-terminated self-assembled monolayers. Biomaterials, 2006, 27, 5357-5367.	11.4	217
41	Protein adsorption on 18-alkyl chains immobilized on hydroxyl-terminated self-assembled monolayers. Biomaterials, 2005, 26, 3891-3899.	11.4	38
42	Hydrolysis of α-lactalbumin by cardosin A immobilized on highly activated supports. Enzyme and Microbial Technology, 2003, 33, 908-916.	3.2	29