Ines C GonÃ\salves

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2279216/publications.pdf

Version: 2024-02-01

42 papers 2,003 citations

257450 24 h-index 276875 41 g-index

44 all docs 44 docs citations

44 times ranked 3410 citing authors

#	Article	IF	Citations
1	Graphene-based materials biocompatibility: A review. Colloids and Surfaces B: Biointerfaces, 2013, 111, 188-202.	5.0	470
2	Fibrinogen adsorption, platelet adhesion and activation on mixed hydroxyl-/methyl-terminated self-assembled monolayers. Biomaterials, 2006, 27, 5357-5367.	11.4	217
3	Biocompatibility of poly(lactic acid) with incorporated graphene-based materials. Colloids and Surfaces B: Biointerfaces, 2013, 104, 229-238.	5.0	136
4	Poly(lactic acid) Composites Containing Carbon-Based Nanomaterials: A Review. Polymers, 2017, 9, 269.	4.5	109
5	Fabrication and antimicrobial performance of surfaces integrating graphene-based materials. Carbon, 2018, 132, 709-732.	10.3	70
6	Smaller particle size and higher oxidation improves biocompatibility of graphene-based materials. Carbon, 2016, 99, 318-329.	10.3	62
7	Modulation of stability and mucoadhesive properties of chitosan microspheres for therapeutic gastric application. International Journal of Pharmaceutics, 2013, 454, 116-124.	5.2	53
8	Effect of surface chemistry on bacterial adhesion, viability, and morphology. Journal of Biomedical Materials Research - Part A, 2011, 99A, 344-353.	4.0	49
9	The potential utility of chitosan micro/nanoparticles in the treatment of gastric infection. Expert Review of Anti-Infective Therapy, 2014, 12, 981-992.	4.4	49
10	Antimicrobial graphene nanoplatelets coatings for silicone catheters. Carbon, 2018, 139, 635-647.	10.3	48
11	Docosahexaenoic acid loaded lipid nanoparticles with bactericidal activity against Helicobacter pylori. International Journal of Pharmaceutics, 2017, 519, 128-137.	5.2	47
12	Polymer surface adsorption as a strategy to improve the biocompatibility of graphene nanoplatelets. Colloids and Surfaces B: Biointerfaces, 2016, 146, 818-824.	5.0	39
13	Protein adsorption on 18-alkyl chains immobilized on hydroxyl-terminated self-assembled monolayers. Biomaterials, 2005, 26, 3891-3899.	11.4	38
14	Effect of biodegradation on thermo-mechanical properties and biocompatibility of poly(lactic) Tj ETQq0 0 0 rgBT	/Oyerlock	193f 50 222
15	Effect of gastric environment on Helicobacter pylori adhesion to a mucoadhesive polymer. Acta Biomaterialia, 2013, 9, 5208-5215.	8.3	37
16	Biocompatible reinforcement of poly(Lactic acid) with graphene nanoplatelets. Polymer Composites, 2018, 39, E308.	4.6	35
17	Adsorption of fluorobenzene onto granular activated carbon: Isotherm and bioavailability studies. Bioresource Technology, 2007, 98, 3424-3430.	9.6	34
18	Graphene Surfaces Interaction with Proteins, Bacteria, Mammalian Cells, and Blood Constituents: The Impact of Graphene Platelet Oxidation and Thickness. ACS Applied Materials & Samp; Interfaces, 2020, 12, 21020-21035.	8.0	34

#	Article	IF	CITATIONS
19	Protein adsorption and clotting time of pHEMA hydrogels modified with C18 ligands to adsorb albumin selectively and reversibly. Biomaterials, 2009, 30, 5541-5551.	11.4	32
20	Lipid nanoparticles to counteract gastric infection without affecting gut microbiota. European Journal of Pharmaceutics and Biopharmaceutics, 2018, 127, 378-386.	4.3	31
21	Hydrolysis of \hat{l}_{\pm} -lactalbumin by cardosin A immobilized on highly activated supports. Enzyme and Microbial Technology, 2003, 33, 908-916.	3.2	29
22	Bacterial-binding chitosan microspheres for gastric infection treatment and prevention. Acta Biomaterialia, 2013, 9, 9370-9378.	8.3	29
23	Incorporation of graphene oxide into poly(É>-caprolactone) 3D printed fibrous scaffolds improves their antimicrobial properties. Materials Science and Engineering C, 2020, 109, 110537.	7.3	28
24	Graphene oxide-reinforced poly(2-hydroxyethyl methacrylate) hydrogels with extreme stiffness and high-strength. Composites Science and Technology, 2019, 184, 107819.	7.8	26
25	Carbon nanomaterials for phototherapy of cancer and microbial infections. Carbon, 2022, 190, 194-244.	10.3	24
26	Near-Infrared Radiation-Based Mild Photohyperthermia Therapy of Non-Melanoma Skin Cancer with PEGylated Reduced Nanographene Oxide. Polymers, 2020, 12, 1840.	4.5	23
27	Selective protein adsorption modulates platelet adhesion and activation to oligo(ethylene) Tj ETQq1 1 0.784314 r Research - Part A, 2009, 89A, 642-653.		lock 10 Tf 5 22
28	Surface Grafted MSI-78A Antimicrobial Peptide has High Potential for Gastric Infection Management. Scientific Reports, 2019, 9, 18212.	3.3	21
29	Platelet and leukocyte adhesion to albumin binding self-assembled monolayers. Journal of Materials Science: Materials in Medicine, 2011, 22, 2053-2063.	3.6	20
30	Orally administrated chitosan microspheres bind Helicobacter pylori and decrease gastric infection in mice. Acta Biomaterialia, 2020, 114, 206-220.	8.3	19
31	Exposure of Smaller and Oxidized Graphene on Polyurethane Surface Improves its Antimicrobial Performance. Nanomaterials, 2020, 10, 349.	4.1	19
32	The effect of octadecyl chain immobilization on the hemocompatibility of poly (2-hydroxyethyl) Tj ETQq0 0 0 rgBT	/Overlock	10 Tf 50 22
33	Bacteria-targeted biomaterials: Glycan-coated microspheres to bind Helicobacter pylori. Acta Biomaterialia, 2016, 33, 40-50.	8.3	15
34	Graphene-based materials: the key for the successful application of pHEMA as a blood-contacting device. Biomaterials Science, 2021, 9, 3362-3377.	5. 4	14
35	Adhesion of human leukocytes on mixtures of hydroxyl―and methylâ€terminated selfâ€assembled monolayers: Effect of blood protein adsorption. Journal of Biomedical Materials Research - Part A, 2010, 93A, 12-19.	4.0	11
36	Graphene Oxide Topical Administration: Skin Permeability Studies. Materials, 2021, 14, 2810.	2.9	11

#	Article	IF	Citations
37	Recent advances on bioprinting of hydrogels containing carbon materials. Materials Today Chemistry, 2022, 23, 100617.	3.5	11
38	Graphene Oxide Coating Improves the Mechanical and Biological Properties of Decellularized Umbilical Cord Arteries. ACS Applied Materials & Samp; Interfaces, 2021, 13, 32662-32672.	8.0	10
39	Graphene films irradiated with safe low-power NIR-emitting diodes kill multidrug resistant bacteria. Carbon, 2021, 180, 10-21.	10.3	10
40	Using Graphene-Based Materials for Stiff and Strong Poly(ethylene glycol) Hydrogels. International Journal of Molecular Sciences, 2022, 23, 2312.	4.1	7
41	In vitro interaction of polymeric biomaterials with cells. , 2017, , 285-315.		3
42	Carbon Biomaterials. , 2020, , 327-360.		0