Pedro Daleo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2279035/publications.pdf Version: 2024-02-01

PEDRO DALEO

#	Article	IF	CITATIONS
1	Nutrient enrichment increases invertebrate herbivory and pathogen damage in grasslands. Journal of Ecology, 2022, 110, 327-339.	4.0	25
2	Floodâ€stimulated herbivory drives range retraction of a plant ecosystem. Journal of Ecology, 2021, 109, 3541-3554.	4.0	4
3	Species loss due to nutrient addition increases with spatial scale in global grasslands. Ecology Letters, 2021, 24, 2100-2112.	6.4	13
4	Negative effects of nitrogen override positive effects of phosphorus on grassland legumes worldwide. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	40
5	Temporal rarity is a better predictor of local extinction risk than spatial rarity. Ecology, 2021, 102, e03504.	3.2	14
6	General destabilizing effects of eutrophication on grassland productivity at multiple spatial scales. Nature Communications, 2020, 11, 5375.	12.8	75
7	Microbial processing of plant remains is coâ€limited by multiple nutrients in global grasslands. Global Change Biology, 2020, 26, 4572-4582.	9.5	27
8	Dominance by Spartina densiflora slows salt marsh litter decomposition. Journal of Vegetation Science, 2020, 31, 1181-1191.	2.2	0
9	Soil net nitrogen mineralisation across global grasslands. Nature Communications, 2019, 10, 4981.	12.8	57
10	Field Experiments and Meta-analysis Reveal Wetland Vegetation as a Crucial Element in the Coastal Protection Paradigm. Current Biology, 2019, 29, 1800-1806.e3.	3.9	50
11	Herbivory and dropping effects by small mammals on saltâ€marsh vegetation vary across microhabitats. Journal of Vegetation Science, 2019, 30, 322-330.	2.2	2
12	Evaluating the potential impact of bird predation on the SW Atlantic fiddler crab Leptuca uruguayensis. Helgoland Marine Research, 2019, 73, .	1.3	4
13	Nitrogen enrichment suppresses other environmental drivers and homogenizes salt marsh leaf microbiome. Ecology, 2018, 99, 1411-1418.	3.2	13
14	Herbivory and eutrophication mediate grassland plant nutrient responses across a global climatic gradient. Ecology, 2018, 99, 822-831.	3.2	42
15	Local loss and spatial homogenization of plant diversity reduce ecosystem multifunctionality. Nature Ecology and Evolution, 2018, 2, 50-56.	7.8	172
16	A Global Synthesis Reveals Gaps in Coastal Habitat Restoration Research. Sustainability, 2018, 10, 1040.	3.2	50
17	Herbivory and presence of a dominant competitor interactively affect salt marsh plant diversity. Journal of Vegetation Science, 2017, 28, 1178-1186.	2.2	7
18	Herbivory and trampling by small mammals modify soil properties and plant assemblages. Journal of Vegetation Science, 2017, 28, 1028-1035.	2.2	12

Pedro Daleo

#	Article	IF	CITATIONS
19	Context-dependent interaction between an intertidal sponge and a green macroalga in a variable temperate Patagonian bay. Marine Ecology - Progress Series, 2017, 581, 21-32.	1.9	8
20	Abundance of the sponge <i>Hymeniacidon</i> cf. <i>perlevis</i> in a stressful environment of Patagonia: relationships with <i>Ulva lactuca</i> and physical variables. Journal of the Marine Biological Association of the United Kingdom, 2016, 96, 465-472.	0.8	13
21	Thresholds in marsh resilience to the Deepwater Horizon oil spill. Scientific Reports, 2016, 6, 32520.	3.3	19
22	Physical stress modifies topâ€down and bottomâ€up forcing on plant growth and reproduction in a coastal ecosystem. Ecology, 2015, 96, 2147-2156.	3.2	21
23	Can a Single Species Challenge Paradigms of Salt Marsh Functioning?. Estuaries and Coasts, 2015, 38, 1178-1188.	2.2	27
24	Rainfall intensity modulates the interaction between the marsh cordgrass Spartina densiflora and the mouse Akodon azarae. Marine Ecology - Progress Series, 2015, 523, 71-80.	1.9	4
25	Eutrophication weakens stabilizing effects of diversity in natural grasslands. Nature, 2014, 508, 521-525.	27.8	409
26	Herbivory affects salt marsh succession dynamics by suppressing the recovery of dominant species. Oecologia, 2014, 175, 335-343.	2.0	25
27	Herbivores and nutrients control grassland plant diversity via light limitation. Nature, 2014, 508, 517-520.	27.8	669
28	Nutrients and Abiotic Stress Interact to Control Ergot Plant Disease in a SW Atlantic Salt Marsh. Estuaries and Coasts, 2013, 36, 1093-1097.	2.2	2
29	Predicting invasion in grassland ecosystems: is exotic dominance the real embarrassment of richness?. Global Change Biology, 2013, 19, 3677-3687.	9.5	70
30	Avoidance of feeding opportunities by the whelk Buccinanops globulosum in the presence of damaged conspecifics. Marine Biology, 2012, 159, 2359-2365.	1.5	10
31	Habitat shifts and spatial distribution of the intertidal crab Neohelice (Chasmagnathus) granulata Dana. Journal of Sea Research, 2011, 66, 87-94.	1.6	13
32	Crab herbivory regulates reâ€colonization of disturbed patches in a southwestern Atlantic salt marsh. Oikos, 2011, 120, 842-847.	2.7	16
33	Increase of organic matter transport between marshes and tidal flats by the burrowing crab Neohelice (Chasmagnathus) granulata Dana in SW Atlantic salt marshes. Journal of Experimental Marine Biology and Ecology, 2011, 401, 110-117.	1.5	22
34	Abiotic stress mediates top-down and bottom-up control in a Southwestern Atlantic salt marsh. Oecologia, 2010, 163, 181-191.	2.0	62
35	Density affects mating mode and large male mating advantage in a fiddler crab. Oecologia, 2010, 164, 931-941.	2.0	23
36	High abundance and diversity of consumers associated with eutrophic areas in a semi-desert macrotidal coastal ecosystem in Patagonia, Argentina. Estuarine, Coastal and Shelf Science, 2010, 88, 357-364.	2.1	43

Pedro Daleo

#	Article	IF	CITATIONS
37	Ecosystem engineering by burrowing crabs increases cordgrass mortality caused by stem-boring insects. Marine Ecology - Progress Series, 2010, 404, 151-159.	1.9	14
38	Crab bioturbation and herbivory reduce pre- and post-germination success of Sarcocornia perennis in bare patches of SW Atlantic salt marshes. Marine Ecology - Progress Series, 2010, 400, 55-61.	1.9	19
39	The burrowing crab Neohelice granulata affects the root strategies of the cordgrass Spartina densiflora in SW Atlantic salt marshes. Journal of Experimental Marine Biology and Ecology, 2009, 373, 66-71.	1.5	28
40	The effect of size and cheliped autotomy on sexual competition between males of the mud crab Cyrtograpsus angulatus Dana. Marine Biology, 2009, 156, 269-275.	1.5	17
41	Grazer facilitation of fungal infection and the control of plant growth in southâ€western Atlantic salt marshes. Journal of Ecology, 2009, 97, 781-787.	4.0	49
42	Biological invasions and the neutral theory. Diversity and Distributions, 2009, 15, 547-553.	4.1	35
43	Beyond competition: the stress-gradient hypothesis tested in plant–herbivore interactions. Ecology, 2009, 90, 2368-2374.	3.2	74
44	Mycorrhizal fungi determine saltâ€marsh plant zonation depending on nutrient supply. Journal of Ecology, 2008, 96, 431-437.	4.0	63
45	Ecosystem engineers activate mycorrhizal mutualism in salt marshes. Ecology Letters, 2007, 10, 902-908.	6.4	84
46	Positive interactions of the smooth cordgrass Spartina alterniflora on the mud snail Heleobia australis, in South Western Atlantic salt marshes. Journal of Experimental Marine Biology and Ecology, 2007, 353, 180-190.	1.5	24
47	Local and geographic variation in grazing intensity by herbivorous crabs in SW Atlantic salt marshes. Marine Ecology - Progress Series, 2007, 349, 235-243.	1.9	68
48	Negative effects of an autogenic ecosystem engineer: interactions between coralline turf and an ephemeral green alga. Marine Ecology - Progress Series, 2006, 315, 67-73.	1.9	28
49	The relative importance of substratum characteristics and recruitment in determining the spatial distribution of the fiddler crab Uca uruguayensis Nobili. Journal of Experimental Marine Biology and Ecology, 2005, 314, 99-111.	1.5	43
50	Trophic facilitation by the oystercatcher Haematopus palliatus Temminick on the scavenger snail Buccinanops globulosum Kiener in a Patagonian bay. Journal of Experimental Marine Biology and Ecology, 2005, 325, 27-34.	1.5	22
51	The SW Atlantic burrowing crab Chasmagnathus granulatus Dana affects the distribution and survival of the fiddler crab Uca uruguayensis Nobili. Journal of Experimental Marine Biology and Ecology, 2003, 291, 255-267.	1.5	27
52	The role of the RıÌo de la Plata bottom salinity front in accumulating debris. Marine Pollution Bulletin, 2003, 46, 197-202.	5.0	168