Barbara Sherwood Lollar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2278820/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	ABIOTIC METHANE ON EARTH. Reviews of Geophysics, 2013, 51, 276-299.	23.0	451
2	Solubility trapping in formation water as dominant CO2 sink in natural gas fields. Nature, 2009, 458, 614-618.	27.8	405
3	Long-Term Sustainability of a High-Energy, Low-Diversity Crustal Biome. Science, 2006, 314, 479-482.	12.6	350
4	The contribution of the Precambrian continental lithosphere to global H2 production. Nature, 2014, 516, 379-382.	27.8	201
5	An oligotrophic deep-subsurface community dependent on syntrophy is dominated by sulfur-driven autotrophic denitrifiers. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E7927-E7936.	7.1	173
6	Radiolytic H2in continental crust: Nuclear power for deep subsurface microbial communities. Geochemistry, Geophysics, Geosystems, 2005, 6, n/a-n/a.	2.5	165
7	Tracing Organic Contaminants in Groundwater:Â A New Methodology Using Compound-Specific Isotopic Analysis. Environmental Science & Technology, 1997, 31, 3193-3197.	10.0	161
8	Carbon and Hydrogen Isotopic Fractionation during Anaerobic Biodegradation of Benzene. Applied and Environmental Microbiology, 2003, 69, 191-198.	3.1	159
9	Headspace Analysis:Â A New Application for Isotopic Characterization of Dissolved Organic Contaminants. Environmental Science & Technology, 1999, 33, 190-194.	10.0	155
10	An Approach for Assessing Total Instrumental Uncertainty in Compound-Specific Carbon Isotope Analysis:  Implications for Environmental Remediation Studies. Analytical Chemistry, 2007, 79, 3469-3475.	6.5	139
11	Regional groundwater focusing of nitrogen and noble gases into the Hugoton-Panhandle giant gas field, USA. Geochimica Et Cosmochimica Acta, 2002, 66, 2483-2497.	3.9	137
12	Carbon and Hydrogen Isotopic Fractionation during Biodegradation of Methyltert-Butyl Ether. Environmental Science & Technology, 2002, 36, 1931-1938.	10.0	118
13	A metagenomic window into carbon metabolism at 3 km depth in Precambrian continental crust. ISME Journal, 2016, 10, 730-741.	9.8	112
14	Insight into Methyl <i>tert</i> -Butyl Ether (MTBE) Stable Isotope Fractionation from Abiotic Reference Experiments. Environmental Science & Technology, 2007, 41, 5693-5700.	10.0	108
15	Carbon Isotope Fractionation during Anaerobic Biodegradation of Toluene:Â Implications for Intrinsic Bioremediation. Environmental Science & Technology, 2000, 34, 892-896.	10.0	107
16	Variations in microbial carbon sources and cycling in the deep continental subsurface. Geochimica Et Cosmochimica Acta, 2016, 173, 264-283.	3.9	100
17	Quantifying chlorinated ethene degradation during reductive dechlorination at Kelly AFB using stable carbon isotopes. Journal of Contaminant Hydrology, 2005, 76, 279-293.	3.3	99
18	Related assemblages of sulphate-reducing bacteria associated with ultradeep gold mines of South Africa and deep basalt aquifers of Washington State. Environmental Microbiology, 2003, 5, 267-277.	3.8	96

#	Article	IF	CITATIONS
19	Identifying Abiotic Chlorinated Ethene Degradation: Characteristic Isotope Patterns in Reaction Products with Nanoscale Zero-Valent Iron. Environmental Science & Technology, 2008, 42, 5963-5970.	10.0	96
20	Pathway Dependent Isotopic Fractionation during Aerobic Biodegradation of 1,2-Dichloroethane. Environmental Science & Technology, 2004, 38, 4775-4781.	10.0	74
21	Hydrogen Isotope Fractionation during Methanogenic Degradation of Toluene:  Potential for Direct Verification of Bioremediation. Environmental Science & Technology, 2000, 34, 4577-4581.	10.0	73
22	lsotopic Evidence Suggests Different Initial Reaction Mechanisms for Anaerobic Benzene Biodegradation. Environmental Science & Technology, 2008, 42, 8290-8296.	10.0	70
23	Neon identifies two billion year old fluid component in Kaapvaal Craton. Chemical Geology, 2011, 283, 287-296.	3.3	68
24	Effects of Trace Element Concentration on Enzyme Controlled Stable Isotope Fractionation during Aerobic Biodegradation of Toluene. Environmental Science & Technology, 2006, 40, 7675-7681.	10.0	60
25	Geochemically Generated, Energy-Rich Substrates and Indigenous Microorganisms in Deep, Ancient Groundwater. Geomicrobiology Journal, 2005, 22, 325-335.	2.0	59
26	Planktonic Microbial Communities Associated with Fracture-Derived Groundwater in a Deep Gold Mine of South Africa. Geomicrobiology Journal, 2006, 23, 475-497.	2.0	55
27	Tracing ancient hydrogeological fracture network age and compartmentalisation using noble gases. Geochimica Et Cosmochimica Acta, 2018, 222, 340-362.	3.9	53
28	Is Mars alive?. Eos, 2006, 87, 433.	0.1	50
29	Insights into Enzyme Kinetics of Chloroethane Biodegradation Using Compound Specific Stable Isotopes. Environmental Science & Technology, 2010, 44, 7498-7503.	10.0	50
30	Pathway-Dependent Isotope Fractionation during Aerobic and Anaerobic Degradation of Monochlorobenzene and 1,2,4-Trichlorobenzene. Environmental Science & Technology, 2011, 45, 8321-8327.	10.0	47
31	Potential for Identifying Abiotic Chloroalkane Degradation Mechanisms using Carbon Isotopic Fractionation. Environmental Science & Technology, 2008, 42, 126-132.	10.0	46
32	â€~Follow the Water': Hydrogeochemical Constraints on Microbial Investigations 2.4 km Below Surface at the Kidd Creek Deep Fluid and Deep Life Observatory. Geomicrobiology Journal, 2019, 36, 859-872.	2.0	46
33	Anaerobic Conversion of Chlorobenzene and Benzene to CH ₄ and CO ₂ in Bioaugmented Microcosms. Environmental Science & Technology, 2013, 47, 2378-2385.	10.0	45
34	Intramolecular isotopic evidence for bacterial oxidation of propane in subsurface natural gas reservoirs. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 6653-6658.	7.1	44
35	A model of diffuse degassing at three subduction-related volcanoes. Bulletin of Volcanology, 2000, 62, 130-142.	3.0	41
36	Capture of Planktonic Microbial Diversity in Fractures by Long-Term Monitoring of Flowing Boreholes, Evander Basin, South Africa. Geomicrobiology Journal, 2011, 28, 275-300.	2.0	33

#	Article	IF	CITATIONS
37	Dissolved organic matter compositions in 0.6–3.4â€ [–] km deep fracture waters, Kaapvaal Craton, South Africa. Organic Geochemistry, 2018, 118, 116-131.	1.8	33
38	Mechanistic Dichotomy in Bacterial Trichloroethene Dechlorination Revealed by Carbon and Chlorine Isotope Effects. Environmental Science & Technology, 2019, 53, 4245-4254.	10.0	33
39	Sources of Uncertainty in Biotransformation Mechanistic Interpretations and Remediation Studies using CSIA. Analytical Chemistry, 2019, 91, 9147-9153.	6.5	32
40	Mechanisms and rates of 4He, 40Ar, and H2 production and accumulation in fracture fluids in Precambrian Shield environments. Chemical Geology, 2019, 530, 119322.	3.3	31
41	High-resolution, long-term isotopic and isotopologue variation identifies the sources and sinks of methane in a deep subsurface carbon cycle. Geochimica Et Cosmochimica Acta, 2021, 294, 315-334.	3.9	31
42	Dual Carbon–Chlorine Isotope Analysis Indicates Distinct Anaerobic Dichloromethane Degradation Pathways in Two Members of <i>Peptococcaceae</i> . Environmental Science & Technology, 2018, 52, 8607-8616.	10.0	29
43	The role of low-temperature 180 exchange in the isotopic evolution of deep subsurface fluids. Chemical Geology, 2021, 561, 120027.	3.3	29
44	Source Differentiation for Benzene and Chlorobenzene Groundwater Contamination: A Field Application of Stable Carbon and Hydrogen Isotope Analyses. Environmental Forensics, 2008, 9, 177-186.	2.6	28
45	H2-rich and Hydrocarbon Gas Recovered in a Deep Precambrian Well in Northeastern Kansas. Natural Resources Research, 2007, 16, 277-292.	4.7	27
46	Biosignatures and abiotic constraints on early life. Nature, 2006, 444, E18-E18.	27.8	26
47	Compound-specific hydrogen isotope analysis of 1,2-dichloroethane: potential for delineating source and fate of chlorinated hydrocarbon contaminants in groundwater. Rapid Communications in Mass Spectrometry, 2007, 21, 1841-1847.	1.5	26
48	lsotope analysis as a natural reaction probe to determine mechanisms of biodegradation of 1,2-dichloroethane. Environmental Microbiology, 2007, 9, 1651-1657.	3.8	25
49	Reductive Dehalogenation of Trichloromethane by Two Different <i>Dehalobacter restrictus</i> Strains Reveal Opposing Dual Element Isotope Effects. Environmental Science & Technology, 2019, 53, 2332-2343.	10.0	25
50	Crustal Groundwater Volumes Greater Than Previously Thought. Geophysical Research Letters, 2021, 48, e2021GL093549.	4.0	24
51	Determination of in situ biodegradation rates via a novel high resolution isotopic approach in contaminated sediments. Water Research, 2019, 149, 632-639.	11.3	21
52	Multi-element (C, H, Cl, Br) stable isotope fractionation as a tool to investigate transformation processes for halogenated hydrocarbons. Environmental Sciences: Processes and Impacts, 2020, 22, 567-582.	3.5	21
53	Vapor Pressure Isotope Effects in Halogenated Organic Compounds and Alcohols Dissolved in Water. Analytical Chemistry, 2016, 88, 12066-12071.	6.5	20
54	Planetary Mass Spectrometry for Agnostic Life Detection in the Solar System. Frontiers in Astronomy and Space Sciences, 2021, 8, .	2.8	19

#	Article	IF	CITATIONS
55	Sediment Monitored Natural Recovery Evidenced by Compound Specific Isotope Analysis and High-Resolution Pore Water Sampling. Environmental Science & Technology, 2016, 50, 12197-12204.	10.0	17
56	Pressureâ€monitored headspace analysis combined with compoundâ€specific isotope analysis to measure isotope fractionation in gasâ€producing reactions. Rapid Communications in Mass Spectrometry, 2013, 27, 1778-1784.	1.5	14
57	Bioenergetic Constraints on Microbial Hydrogen Utilization in Precambrian Deep Crustal Fracture Fluids. Geomicrobiology Journal, 2018, 35, 108-119.	2.0	14
58	Novel Microbial Groups Drive Productivity in an Archean Iron Formation. Frontiers in Microbiology, 2021, 12, 627595.	3.5	12
59	14C in Methane and DIC in the Deep Terrestrial Subsurface: Implications for Microbial Methanogenesis. Geomicrobiology Journal, 2006, 23, 453-462.	2.0	11
60	Transformation of Chlorofluorocarbons Investigated via Stable Carbon Compound-Specific Isotope Analysis. Environmental Science & Technology, 2020, 54, 870-878.	10.0	11
61	Determining the role of diffusion and basement flux in controlling 4He distribution in sedimentary basin fluids. Earth and Planetary Science Letters, 2021, 574, 117175.	4.4	11
62	GEOCHEMISTRY: Life's Chemical Kitchen. Science, 2004, 304, 972-973.	12.6	10
63	Compound-Specific Stable Carbon Isotope Analysis of Chlorofluorocarbons in Groundwater. Analytical Chemistry, 2015, 87, 10498-10504.	6.5	10
64	The Grayness of the Origin of Life. Life, 2021, 11, 498.	2.4	10
65	Multi-element isotopic evidence for monochlorobenzene and benzene degradation under anaerobic conditions in contaminated sediments. Water Research, 2021, 207, 117809.	11.3	9
66	Requirements for Chromium Reactors for Use in the Determination of H Isotopes in Compound-Specific Stable Isotope Analysis of Chlorinated Compounds. Analytical Chemistry, 2020, 92, 2383-2387.	6.5	8
67	N2 in deep subsurface fracture fluids of the Canadian Shield: Source and possible recycling processes. Chemical Geology, 2021, 585, 120571.	3.3	8
68	In situ oxidation of sulfide minerals supports widespread sulfate reducing bacteria in the deep subsurface of the Witwatersrand Basin (South Africa): Insights from multiple sulfur and oxygen isotopes. Earth and Planetary Science Letters, 2022, 577, 117247.	4.4	8
69	In Situ Growth of Halophilic Bacteria in Saline Fracture Fluids from 2.4 km below Surface in the Deep Canadian Shield. Life, 2020, 10, 307.	2.4	5
70	Advances in carbon isotope analysis of trapped methane and volatile hydrocarbons in crystalline rock cores. Rapid Communications in Mass Spectrometry, 2021, 35, e9170.	1.5	3
71	Compound-specific isotope analysis (CSIA) evaluation of degradation of chlorinated benzenes (CBs) and benzene in a contaminated aquifer. Journal of Contaminant Hydrology, 2022, 250, 104051.	3.3	3
72	Implications of regression bias for multi-element isotope analysis for environmental remediation. Talanta, 2021, 226, 122113.	5.5	2