Bente Frølund

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/227814/publications.pdf

Version: 2024-02-01

71 papers 1,574 citations

304602 22 h-index 35 g-index

74 all docs

74 docs citations

74 times ranked 1636 citing authors

#	Article	IF	CITATIONS
1	Novel Class of Potent 4-Arylalkyl Substituted 3-Isoxazolol GABAAAntagonists:Â Synthesis, Pharmacology, and Molecular Modeling. Journal of Medicinal Chemistry, 2002, 45, 2454-2468.	2.9	128
2	$\hat{l}\pm4\hat{l}^2\hat{l}'$ GABA _A receptors are high-affinity targets for \hat{l}^3 -hydroxybutyric acid (GHB). Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 13404-13409.	3.3	87
3	First Demonstration of a Functional Role for Central Nervous System Betaine \hat{I}^3 -Aminobutyric Acid Transporter (mGAT2) Based on Synergistic Anticonvulsant Action among Inhibitors of mGAT1 and mGAT2. Journal of Pharmacology and Experimental Therapeutics, 2005, 312, 866-874.	1.3	79
4	Selective inhibitors of GABA uptake: synthesis and molecular pharmacology of 4-N-methylamino-4,5,6,7-tetrahydrobenzo[d]isoxazol-3-ol analogues. Bioorganic and Medicinal Chemistry, 2005, 13, 895-908.	1.4	73
5	Targeting Myeloid Differentiation Using Potent 2-Hydroxypyrazolo[1,5- <i>a</i>)pyridine Scaffold-Based Human Dihydroorotate Dehydrogenase Inhibitors. Journal of Medicinal Chemistry, 2018, 61, 6034-6055.	2.9	57
6	5-Substituted Imidazole-4-acetic Acid Analogues:  Synthesis, Modeling, and Pharmacological Characterization of a Series of Novel γ-Aminobutyric Acid _C Receptor Agonists. Journal of Medicinal Chemistry, 2007, 50, 4147-4161.	2.9	48
7	Novel Cyclic \hat{I}^3 -Hydroxybutyrate (GHB) Analogs with High Affinity and Stereoselectivity of Binding to GHB Sites in Rat Brain. Journal of Pharmacology and Experimental Therapeutics, 2005, 315, 346-351.	1.3	45
8	Potent 4-Aryl- or 4-Arylalkyl-Substituted 3-Isoxazolol GABAAAntagonists:Â Synthesis, Pharmacology, and Molecular Modeling. Journal of Medicinal Chemistry, 2005, 48, 427-439.	2.9	42
9	New insights into the GABA _A receptor structure and orthosteric ligand binding: Receptor modeling guided by experimental data. Proteins: Structure, Function and Bioinformatics, 2011, 79, 1458-1477.	1.5	41
10	Substituted 4-hydroxy-1,2,3-triazoles: synthesis, characterization and first drug design applications through bioisosteric modulation and scaffold hopping approaches. MedChemComm, 2015, 6, 1285-1292.	3.5	40
11	GABAA Receptor Partial Agonists and Antagonists: Structure, Binding Mode, and Pharmacology. Advances in Pharmacology, 2015, 72, 201-227.	1.2	38
12	A Novel Class of Potent 3-Isoxazolol GABAAAntagonists:Â Design, Synthesis, and Pharmacology. Journal of Medicinal Chemistry, 2000, 43, 4930-4933.	2.9	37
13	4-Aryl-5-(4-Piperidyl)-3-Isoxazolol GABAAAntagonists:Â Synthesis, Pharmacology, and Structureâ^'Activity Relationships. Journal of Medicinal Chemistry, 2007, 50, 1988-1992.	2.9	32
14	GHB analogs confer neuroprotection through specific interaction with the CaMKIIÎ $^\pm$ hub domain. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	31
15	Bioisosteres of Indomethacin as Inhibitors of Aldo-Keto Reductase 1C3. ACS Medicinal Chemistry Letters, 2019, 10, 437-443.	1.3	30
16	Hydroxy-1,2,5-oxadiazolyl Moiety as Bioisoster of the Carboxy Function. Synthesis, Ionization Constants, and Pharmacological Characterization of \hat{I}^3 -Aminobutyric Acid (GABA) Related Compounds. Journal of Medicinal Chemistry, 2006, 49, 4442-4446.	2.9	28
17	Astrocytic GABA Transporters: Pharmacological Properties and Targets for Antiepileptic Drugs. Advances in Neurobiology, 2017, 16, 283-296.	1.3	28
18	Potent 4-Arylalkyl-Substituted 3-Isothiazolol GABAA Competitive/Noncompetitive Antagonists:  Synthesis and Pharmacology. Journal of Medicinal Chemistry, 2006, 49, 1388-1396.	2.9	27

#	Article	IF	CITATIONS
19	4-Hydroxy-1,2,3-triazole moiety as bioisostere of the carboxylic acid function: a novel scaffold to probe the orthosteric \hat{l}^3 -aminobutyric acid receptor binding site. European Journal of Medicinal Chemistry, 2018, 158, 311-321.	2.6	27
20	Inhibition of the betaine-GABA transporter (mGAT2/BGT-1) modulates spontaneous electrographic bursting in the medial entorhinal cortex (mEC). Epilepsy Research, 2008, 79, 6-13.	0.8	26
21	Novel High-Affinity and Selective Biaromatic 4-Substituted \hat{I}^3 -Hydroxybutyric Acid (GHB) Analogues as GHB Ligands: Design, Synthesis, and Binding Studies. Journal of Medicinal Chemistry, 2008, 51, 8088-8095.	2.9	26
22	New Synthesis and Tritium Labeling of a Selective Ligand for Studying High-Affinity Î ³ -Hydroxybutyrate (GHB) Binding Sites. Journal of Medicinal Chemistry, 2013, 56, 8201-8205.	2.9	26
23	Structural and molecular aspects of betaine-GABA transporter 1 (BGT1) and its relation to brain function. Neuropharmacology, 2019, 161, 107644.	2.0	25
24	Functional characterization of GABAA receptor-mediated modulation of cortical neuron network activity in microelectrode array recordings. PLoS ONE, 2017, 12, e0186147.	1.1	25
25	Probing α ₄ βδGABA _A Receptor Heterogeneity: Differential Regional Effects of a Functionally Selective α ₄ β _{β_{β_{β_{β_{ΰ Receptor Agonist on Tonic and Phasic Inhibition in Rat Brain. Journal of Neuroscience, 2014, 34, 16256-16272.}}}}}	1.7	24
26	Aza-THIP and related analogues of THIP as GABA C antagonists. Bioorganic and Medicinal Chemistry, 2003, 11, 4891-4896.	1.4	23
27	Hydroxyazole scaffold-based Plasmodium falciparum dihydroorotate dehydrogenase inhibitors: Synthesis, biological evaluation and X-ray structural studies. European Journal of Medicinal Chemistry, 2019, 163, 266-280.	2.6	23
28	Novel 4-(Piperidin-4-yl)-1-hydroxypyrazoles as Î ³ -Aminobutyric AcidAReceptor Ligands: Synthesis, Pharmacology, and Structureâ ⁻ 'Activity Relationships. Journal of Medicinal Chemistry, 2010, 53, 3417-3421.	2.9	22
29	Positive allosteric modulation of the GHB high-affinity binding site by the GABAA receptor modulator monastrol and the flavonoid catechin. European Journal of Pharmacology, 2014, 740, 570-577.	1.7	21
30	Molecular Hybridization of Potent and Selective Î ³ -Hydroxybutyric Acid (GHB) Ligands: Design, Synthesis, Binding Studies, and Molecular Modeling of Novel 3-Hydroxycyclopent-1-enecarboxylic Acid (HOCPCA) and trans-Î ³ -Hydroxycrotonic Acid (T-HCA) Analogs. Journal of Medicinal Chemistry, 2017, 60, 9022-9039.	2.9	21
31	Structure–Function Evaluation of Imidazopyridine Derivatives Selective for δ-Subunit-Containing γ-Aminobutyric Acid Type A (GABAA) Receptors. Journal of Medicinal Chemistry, 2018, 61, 1951-1968.	2.9	21
32	Pharmacological Identification of a Guanidine-Containing \hat{l}^2 -Alanine Analogue with Low Micromolar Potency and Selectivity for the Betaine/GABA Transporter 1 (BGT1). Neurochemical Research, 2014, 39, 1988-1996.	1.6	20
33	Five-Membered $\langle i \rangle N \langle i \rangle$ -Heterocyclic Scaffolds as Novel Amino Bioisosteres at \hat{I}^3 -Aminobutyric Acid (GABA) Type A Receptors and GABA Transporters. Journal of Medicinal Chemistry, 2019, 62, 5797-5809.	2.9	20
34	Synthesis and Biological Evaluation of 4-(Aminomethyl)-1-hydroxypyrazole Analogues of Muscimol as \hat{I}^3 -Aminobutyric AcidA Receptor Agonists. Journal of Medicinal Chemistry, 2013, 56, 993-1006.	2.9	19
35	Probing the Orthosteric Binding Site of GABAA Receptors with Heterocyclic GABA Carboxylic Acid Bioisosteres. Neurochemical Research, 2014, 39, 1005-1015.	1.6	18
36	Development of a Robust Mammalian Cellâ€based Assay for Studying Recombinant α ₄ β _{1/3} Î GABA _A Receptor Subtypes. Basic and Clinical Pharmacology and Toxicology, 2017, 121, 119-129.	1.2	17

#	Article	IF	CITATIONS
37	Novel Radioiodinated Î ³ -Hydroxybutyric Acid Analogues for Radiolabeling and Photolinking of High-Affinity Î ³ -Hydroxybutyric Acid Binding Sites. Journal of Pharmacology and Experimental Therapeutics, 2010, 335, 458-464.	1.3	16
38	In Vitro and In Vivo Evidence for Active Brain Uptake of the GHB Analog HOCPCA by the Monocarboxylate Transporter Subtype 1. Journal of Pharmacology and Experimental Therapeutics, 2015, 354, 166-174.	1.3	16
39	Designing Poly-agonists for Treatment of Metabolic Diseases: Challenges and Opportunities. Drugs, 2019, 79, 1187-1197.	4.9	15
40	Synthesis and pharmacological evaluation of 6-aminonicotinic acid analogues as novel GABAA receptor agonists. European Journal of Medicinal Chemistry, 2014, 84, 404-416.	2.6	14
41	Delineation of the functional properties and the mechanism of action of TMPPAA, an allosteric agonist and positive allosteric modulator of 5-HT3 receptors. Biochemical Pharmacology, 2016, 110-111, 92-108.	2.0	14
42	Regioselective Nâ€Alkylation of Ethyl 4â€Benzyloxyâ€1,2,3â€triazolecarboxylate: A Useful Tool for the Synthesis of Carboxylic Acid Bioisosteres. Journal of Heterocyclic Chemistry, 2019, 56, 501-519.	1.4	14
43	Discovery of 2-(Imidazo[1,2- <i>b</i>)pyridazin-2-yl)acetic Acid as a New Class of Ligands Selective for the γ-Hydroxybutyric Acid (GHB) High-Affinity Binding Sites. Journal of Medicinal Chemistry, 2019, 62, 2798-2813.	2.9	12
44	Development of Non-GAT1-Selective Inhibitors: Challenges and Achievements. Advances in Neurobiology, 2017, 16, 315-332.	1.3	11
45	Pharmacological Characterization of [3H]ATPCA as a Substrate for Studying the Functional Role of the Betaine/GABA Transporter 1 and the Creatine Transporter. ACS Chemical Neuroscience, 2018, 9, 545-554.	1.7	11
46	Differential interactions of 5-(4-piperidyl)-3-isoxazolol analogues with insect \hat{I}^3 -aminobutyric acid receptors leading to functional selectivity. Insect Biochemistry and Molecular Biology, 2015, 66, 64-71.	1.2	10
47	The labeling of unsaturated γâ€hydroxybutyric acid by heavy isotopes of hydrogen: iridium complexâ€mediated H/D exchange by C─H bond activation vs reduction by boroâ€deuterides/tritides. Journal of Labelled Compounds and Radiopharmaceuticals, 2016, 59, 476-483.	0.5	10
48	Discovery of a new class of orthosteric antagonists with nanomolar potency at extrasynaptic GABAA receptors. Scientific Reports, 2020, 10, 10078.	1.6	10
49	The GABAA Antagonist DPP-4-PIOL Selectively Antagonises Tonic over Phasic GABAergic Currents in Dentate Gyrus Granule Cells. Neurochemical Research, 2014, 39, 2078-2084.	1.6	9
50	Context-Dependent Modulation of GABA _A R-Mediated Tonic Currents. Journal of Neuroscience, 2016, 36, 607-621.	1.7	9
51	Silencing of spontaneous activity at $\hat{l}\pm4\hat{l}^21/3\hat{l}$ GABA A receptors in hippocampal granule cells reveals different ligand pharmacology. British Journal of Pharmacology, 2020, 177, 3975-3990.	2.7	9
52	5â€(Piperidinâ€4â€yl)â€3â€Hydroxypyrazole: A Novel Scaffold for Probing the Orthosteric γâ€Aminobutyric Acid Typeâ€A Receptor Binding Site. ChemMedChem, 2014, 9, 2475-2485.	1.6	8
53	Radiosynthesis and Evaluation of [$<$ sup $>$ 11 $<$ /sup $>$ C]3-Hydroxycyclopent-1-enecarboxylic Acid as Potential PET Ligand for the High-Affinity \hat{I}^3 -Hydroxybutyric Acid Binding Sites. ACS Chemical Neuroscience, 2017, 8, 22-27.	1.7	8
54	Monastrol, a 3,4-dihydropyrimidin-2(1 H)-thione, as structural scaffold for the development of modulators for GHB high-affinity binding sites and $\hat{l}\pm1\hat{l}^22\hat{l}'$ GABA A receptors. European Journal of Medicinal Chemistry, 2017, 138, 300-312.	2.6	7

#	Article	IF	CITATIONS
55	Discovery and Evaluation of Anti-Fibrinolytic Plasmin Inhibitors Derived from 5-(4-Piperidyl)isoxazol-3-ol (4-PIOL). Journal of Chemical Information and Modeling, 2017, 57, 1703-1714.	2.5	7
56	Synthesis and Pharmacological Evaluation of [$\langle sup \rangle 11 < sup \rangle C]4$ -Methoxy- $\langle i \rangle N < i \rangle -[2-(thiophen-2-yl)imidazo[1,2-\langle i \rangle a < i \rangle]pyridin-3-yl]benzamide as a Brain Penetrant PET Ligand Selective for the Î-Subunit-Containing Î3-Aminobutyric Acid Type A Receptors. ACS Omega, 2019, 4, 8846-8851.$	1.6	7
57	Exploring the Orthosteric Binding Site of the \hat{l}^3 -Aminobutyric Acid Type A Receptor Using 4-(Piperidin-4-yl)-1-hydroxypyrazoles 3- or 5-Imidazolyl Substituted: Design, Synthesis, and Pharmacological Evaluation. Journal of Medicinal Chemistry, 2013, 56, 6536-6540.	2.9	6
58	Imidazole-4-acetic acid, a new lead structure for interaction with the taurine transporter in outer blood-retinal barrier cells. European Journal of Pharmaceutical Sciences, 2017, 103, 77-84.	1.9	6
59	Developing New 4-PIOL and 4-PHP Analogues for Photoinactivation of Î ³ -Aminobutyric Acid Type A Receptors. ACS Chemical Neuroscience, 2019, 10, 4669-4684.	1.7	6
60	Structural Determinants for the Mode of Action of Imidazopyridine DS2 at \hat{l} -Containing \hat{l} ³ -Aminobutyric Acid Type A Receptors. Journal of Medicinal Chemistry, 2021, 64, 4730-4743.	2.9	6
61	Exploring the molecular determinants for subtype-selectivity of 2-amino-1,4,5,6-tetrahydropyrimidine-5-carboxylic acid analogs as betaine/GABA transporter 1 (BGT1) substrate-inhibitors. Scientific Reports, 2020, 10, 12992.	1.6	5
62	Molecular Determinants and Pharmacological Analysis for a Class of Competitive Non-transported Bicyclic Inhibitors of the Betaine/GABA Transporter BGT1. Frontiers in Chemistry, 2021, 9, 736457.	1.8	5
63	Exploration of the molecular architecture of the orthosteric binding site in the $\hat{1}\pm4\hat{1}^22$ nicotinic acetylcholine receptor with analogs of 3-(dimethylamino)butyl dimethylcarbamate (DMABC) and 1-(pyridin-3-yl)-1,4-diazepane. European Journal of Medicinal Chemistry, 2015, 102, 425-444.	2.6	4
64	Conformationally restrained carbamoylcholine homologues. Synthesis, pharmacology at neuronal nicotinic acetylcholine receptors and biostructural considerations. European Journal of Medicinal Chemistry, 2015, 102, 352-362.	2.6	4
65	Discovery of αâ€Substituted Imidazoleâ€4â€acetic Acid Analogues as a Novel Class of Ï ₁ γâ€Aminobutyric Acid Typeâ€A Receptor Antagonists with Effect on Retinal Vascular Tone. ChemMedChem, 2016, 11, 2299-2310.	1.6	4
66	Sexâ€specific alterations in GABA receptorâ€mediated responses in laterodorsal tegmentum are associated with prenatal exposure to nicotine. Developmental Neurobiology, 2020, 80, 178-199.	1.5	4
67	Structure–Activity Studies of 3,9-Diazaspiro[5.5]undecane-Based γ-Aminobutyric Acid Type A Receptor Antagonists with Immunomodulatory Effect. Journal of Medicinal Chemistry, 2021, 64, 17795-17812.	2.9	4
68	Discovery and Optimization of 5-Hydroxy-Diclofenac toward a New Class of Ligands with Nanomolar Affinity for the CaMKIIα Hub Domain. Journal of Medicinal Chemistry, 2022, 65, 6656-6676.	2.9	3
69	Lack of evidence for synaptic highâ€affinity γâ€hydroxybutyric acid (GHB) transport in rat brain synaptosomes and 11 Na+â€dependentSLCneurotransmitter transporters. Journal of Neurochemistry, 2019, 149, 195-210.	2.1	2
70	Molecular Determinants Underlying Delta Selective Compound 2 Activity at <i>δ</i> Containing GABA _A Receptors. Molecular Pharmacology, 2021, 100, 46-56.	1.0	2
71	Radiolabeled HOCPCA as a highly useful tool in drug discovery and pharmacology. Journal of Labelled Compounds and Radiopharmaceuticals, 2021, 64, 77-81.	0.5	0