Bradley B Keller

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/227803/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ferroptosis is essential for diabetic cardiomyopathy and is prevented by sulforaphane via AMPK/NRF2 pathways. Acta Pharmaceutica Sinica B, 2022, 12, 708-722.	5.7	153
2	Sulforaphane Does Not Protect Right Ventricular Systolic and Diastolic Functions in Nrf2 Knockout Pulmonary Artery Hypertension Mice. Cardiovascular Drugs and Therapy, 2022, 36, 425-436.	1.3	8
3	Zinc as a countermeasure for cadmium toxicity. Acta Pharmacologica Sinica, 2021, 42, 340-346.	2.8	43
4	Engineered cardiac tissues: a novel in vitro model to investigate the pathophysiology of mouse diabetic cardiomyopathy. Acta Pharmacologica Sinica, 2021, 42, 932-941.	2.8	10
5	Successful outcomes for atrial septal defect associated with pulmonary arterial hypertension using a "treat-repair-treat―strategy. International Journal of Cardiology Congenital Heart Disease, 2021, 2, 100075.	0.2	3
6	Nrf2: Redox and Metabolic Regulator of Stem Cell State and Function. Trends in Molecular Medicine, 2020, 26, 185-200.	3.5	137
7	Zinc protects against cadmium-induced toxicity in neonatal murine engineered cardiac tissues via metallothionein-dependent and independent mechanisms. Acta Pharmacologica Sinica, 2020, 41, 638-649.	2.8	12
8	Mechanisms of diabetic cardiomyopathy and potential therapeutic strategies: preclinical and clinical evidence. Nature Reviews Cardiology, 2020, 17, 585-607.	6.1	353
9	Sulforaphane prevents right ventricular injury and reduces pulmonary vascular remodeling in pulmonary arterial hypertension. American Journal of Physiology - Heart and Circulatory Physiology, 2020, 318, H853-H866.	1.5	26
10	Preparation of Mesh-Shaped Engineered Cardiac Tissues Derived from Human iPS Cells for In Vivo Myocardial Repair. Journal of Visualized Experiments, 2020, , .	0.2	1
11	Chronic optical pacing conditioning of h-iPSC engineered cardiac tissues. Journal of Tissue Engineering, 2019, 10, 204173141984174.	2.3	17
12	Neonatal murine engineered cardiac tissue toxicology model: Impact of dexrazoxane on doxorubicin induced injury. Life Sciences, 2019, 239, 117070.	2.0	4
13	Utilizing Contrast-Enhanced Ultrasound Imaging for Evaluating Fatty Liver Disease Progression in Pre-clinical Mouse Models. Ultrasound in Medicine and Biology, 2019, 45, 549-557.	0.7	14
14	Right ventricular dysfunction and remodeling in diabetic cardiomyopathy. American Journal of Physiology - Heart and Circulatory Physiology, 2019, 316, H113-H122.	1.5	27
15	Challenging cardiac function post-spinal cord injury with dobutamine. Autonomic Neuroscience: Basic and Clinical, 2018, 209, 19-24.	1.4	14
16	Neonatal Murine Engineered Cardiac Tissue Toxicology Model: Impact of Metallothionein Overexpression on Cadmium-Induced Injury. Toxicological Sciences, 2018, 165, 499-511.	1.4	10
17	Adipose-derived cells improve left ventricular diastolic function and increase microvascular perfusion in advanced age. PLoS ONE, 2018, 13, e0202934.	1.1	18
18	Quantification of Cardiomyocyte Alignment from Three-Dimensional (3D) Confocal Microscopy of Engineered Tissue. Microscopy and Microanalysis, 2017, 23, 826-842.	0.2	10

BRADLEY B KELLER

#	Article	IF	CITATIONS
19	Impact of Cell Composition and Geometry on Human Induced Pluripotent Stem Cells-Derived Engineered Cardiac Tissue. Scientific Reports, 2017, 7, 45641.	1.6	61
20	Metallothionein Is Downstream of Nrf2 and Partially Mediates Sulforaphane Prevention of Diabetic Cardiomyopathy. Diabetes, 2017, 66, 529-542.	0.3	137
21	Exacerbation of diabetic cardiac hypertrophy in OVE26 mice by angiotensin II is associated with JNK/c-Jun/miR-221-mediated autophagy inhibition. Oncotarget, 2017, 8, 106661-106671.	0.8	34
22	The myocardial regenerative potential of three-dimensional engineered cardiac tissues composed of multiple human iPS cell-derived cardiovascular cell lineages. Scientific Reports, 2016, 6, 29933.	1.6	95
23	Three-Dimensional Reconstruction of Intracardiac Anatomy Using CTA and Surgical Planning for Double Outlet Right Ventricle. World Journal for Pediatric & Congenital Heart Surgery, 2016, 7, 467-474.	0.3	16
24	Adipose-Derived Stromal Vascular Fraction Cell Effects on a Rodent Model of Thin Endometrium. PLoS ONE, 2015, 10, e0144823.	1.1	15
25	Effects of Physiologic Mechanical Stimulation on Embryonic Chick Cardiomyocytes Using a Microfluidic Cardiac Cell Culture Model. Analytical Chemistry, 2015, 87, 2107-2113.	3.2	42
26	Simulation of Dilated Heart Failure with Continuous Flow Circulatory Support. PLoS ONE, 2014, 9, e85234.	1.1	24
27	Investigating developmental cardiovascular biomechanics and the origins of congenital heart defects. Frontiers in Physiology, 2014, 5, 408.	1.3	37
28	Cardiac regeneration and diabetes. Regenerative Medicine Research, 2014, 2, 1.	2.2	9
29	Left atrial ligation alters intracardiac flow patterns and the biomechanical landscape in the chick embryo. Developmental Dynamics, 2014, 243, 652-662.	0.8	31
30	Guest Editorial: Special Issue on Fetal Hemodynamics. Cardiovascular Engineering and Technology, 2013, 4, 231-233.	0.7	5
31	Cardiac Cell Culture Model As a Left Ventricle Mimic for Cardiac Tissue Generation. Analytical Chemistry, 2013, 85, 8773-8779.	3.2	26
32	Gene expression profiles in engineered cardiac tissues respond to mechanical loading and inhibition of tyrosine kinases. Physiological Reports, 2013, 1, e00078.	0.7	13
33	Critical Transitions in Early Embryonic Aortic Arch Patterning and Hemodynamics. PLoS ONE, 2013, 8, e60271.	1.1	43
34	Human Skeletal Muscle Cells With a Slow Adhesion Rate After Isolation and an Enhanced Stress Resistance Improve Function of Ischemic Hearts. Molecular Therapy, 2012, 20, 138-145.	3.7	18
35	Computational hemodynamic optimization predicts dominant aortic arch selection is driven by embryonic outflow tract orientation in the chick embryo. Biomechanics and Modeling in Mechanobiology, 2012, 11, 1057-1073.	1.4	20
36	Mechanical Loading of Stem Cells for Improvement of Transplantation Outcome in a Model of Acute Myocardial Infarction: The Role of Loading History. Tissue Engineering - Part A, 2012, 18, 1101-1108.	1.6	25

BRADLEY B KELLER

#	Article	IF	CITATIONS
37	Developing Cardiac and Skeletal Muscle Share Fast-Skeletal Myosin Heavy Chain and Cardiac Troponin-I Expression. PLoS ONE, 2012, 7, e40725.	1.1	19
38	Engineered Fetal Cardiac Graft Preserves Its Cardiomyocyte Proliferation Within Postinfarcted Myocardium and Sustains Cardiac Function. Tissue Engineering - Part A, 2011, 17, 585-596.	1.6	32
39	Morphological and mechanical characteristics of the reconstructed rat abdominal wall following use of a wet electrospun biodegradable polyurethane elastomer scaffold. Biomaterials, 2010, 31, 3253-3265.	5.7	75
40	Placental Inflammation and Fetal Hemodynamics in a Rat Model of Chorioamnionitis. Pediatric Research, 2010, 68, 513-518.	1.1	25
41	Cellular Antioxidant Levels Influence Muscle Stem Cell Therapy. Molecular Therapy, 2010, 18, 1865-1873.	3.7	75
42	Sex of Muscle Stem Cells Does Not Influence Potency for Cardiac Cell Therapy. Cell Transplantation, 2009, 18, 1137-1146.	1.2	12
43	Engineered Early Embryonic Cardiac Tissue Increases Cardiomyocyte Proliferation by Cyclic Mechanical Stretch via p38-MAP Kinase Phosphorylation. Tissue Engineering - Part A, 2009, 15, 1373-1380.	1.6	35
44	Human embryonic stem cell-derived hematoendothelial progenitors engraft chicken embryos. Experimental Hematology, 2009, 37, 31-41.	0.2	20
45	Aortic Arch Morphogenesis and Flow Modeling in the Chick Embryo. Annals of Biomedical Engineering, 2009, 37, 1069-1081.	1.3	82
46	Pulsatile In Vitro Simulation of the Pediatric Univentricular Circulation for Evaluation of Cardiopulmonary Assist Scenarios. Artificial Organs, 2009, 33, 967-976.	1.0	19
47	Naive Rat Amnion-Derived Cell Transplantation Improved Left Ventricular Function and Reduced Myocardial Scar of Postinfarcted Heart. Cell Transplantation, 2009, 18, 477-486.	1.2	48
48	In vitro hemodynamic investigation of the embryonic aortic arch at late gestation. Journal of Biomechanics, 2008, 41, 1697-1706.	0.9	22
49	Myogenic Endothelial Cells Purified From Human Skeletal Muscle Improve Cardiac Function After Transplantation Into Infarcted Myocardium. Journal of the American College of Cardiology, 2008, 52, 1869-1880.	1.2	77
50	The Role of Cardiac Troponin T Quantity and Function in Cardiac Development and Dilated Cardiomyopathy. PLoS ONE, 2008, 3, e2642.	1.1	56
51	An Elastic, Biodegradable Cardiac Patch Induces Contractile Smooth Muscle and Improves Cardiac Remodeling and Function in Subacute Myocardial Infarction. Journal of the American College of Cardiology, 2007, 49, 2292-2300.	1.2	211
52	A Relationship Between Vascular Endothelial Growth Factor, Angiogenesis, and Cardiac Repair After Muscle Stem Cell Transplantation Into Ischemic Hearts. Journal of the American College of Cardiology, 2007, 50, 1677-1684.	1.2	139
53	Cardiovascular Developmental Insights from Embryos. Annals of the New York Academy of Sciences, 2007, 1101, 377-388.	1.8	25
54	Engineered early embryonic cardiac tissue retains proliferative and contractile properties of developing embryonic myocardium. American Journal of Physiology - Heart and Circulatory Physiology, 2006, 291, H1829-H1837.	1.5	52

BRADLEY B KELLER

#	Article	IF	CITATIONS
55	Impact of Hypoxia on Early Chick Embryo Growth and Cardiovascular Function. Pediatric Research, 2006, 59, 116-120.	1.1	58
56	Preterminal Gasping During Hypoxic Cardiac Arrest Increases Cardiac Function in Immature Rats. Pediatric Research, 2006, 60, 174-179.	1.1	22
57	Usefulness of plasma B-type natriuretic peptide to identify ventricular dysfunction in pediatric and adult patients with congenital heart disease. American Journal of Cardiology, 2005, 95, 474-478.	0.7	100
58	Arterial hemodynamics and mechanical properties after circulatory intervention in the chick embryo. Journal of Experimental Biology, 2005, 208, 1877-1885.	0.8	61
59	Differential Myocardial Infarct Repair with Muscle Stem Cells Compared to Myoblasts. Molecular Therapy, 2005, 12, 1130-1141.	3.7	145
60	Quality of life and social outcomes in adults with congenital heart disease living in rural areas of Kentucky. American Journal of Cardiology, 2004, 94, 263-266.	0.7	18
61	Differential Cardiovascular Regulatory Activities of the α1B- and α1D-Adrenoceptor Subtypes. Journal of Pharmacology and Experimental Therapeutics, 2003, 305, 1045-1053.	1.3	55
62	Microtubule Involvement in the Adaptation to Altered Mechanical Load in Developing Chick Myocardium. Circulation Research, 2002, 91, 353-359.	2.0	36
63	Lumped parameter estimation for the embryonic chick vascular system: a time-domain approach using MLAB. Computer Methods and Programs in Biomedicine, 2000, 63, 29-41.	2.6	17
64	Umbilical arterial blood flow in the mouse embryo during development and following acutely increased heart rate. Ultrasound in Medicine and Biology, 1999, 25, 361-370.	0.7	42
65	Characterization of passive embryonic myocardium by quasi-linear viscoelasticity theory. Journal of Biomechanics, 1997, 30, 985-988.	0.9	35
66	In Vivo Assessment of Embryonic Cardiovascular Dimensions and Function in Day-10.5 to -14.5 Mouse Embryos. Circulation Research, 1996, 79, 247-255.	2.0	81
67	Embryonic ventricular diastolic and systolic pressure-volume relations. Cardiology in the Young, 1994, 4, 19-27.	0.4	41
68	Effects of pulsed ultrasound on the frog heart: I. Thresholds for changes in cardiac rhythm and aortic pressure. Ultrasound in Medicine and Biology, 1993, 19, 385-390.	0.7	55
69	Analysis of Dynamic Atrial Dimension and Function during Early Cardiac Development in the Chick Embryo. Pediatric Research, 1992, 32, 333-337.	1.1	18
70	Bioeffects in Echocardiography. Echocardiography, 1992, 9, 605-623.	0.3	43
71	Thresholds for premature ventricular contractions in frog hearts exposed to lithotripter fields. Ultrasound in Medicine and Biology, 1991, 17, 341-346.	0.7	52
72	Diastolic Filling Characteristics in the Stage 12 to 27 Chick Embryo Ventricle. Pediatric Research, 1991, 29, 334-337.	1.1	56

5

#	Article	IF	CITATIONS
73	Oncocytic cardiomyopathy of infancy with Wolff-Parkinson-White syndrome and ectopic foci causing tachydysrhythmias in children. American Heart Journal, 1987, 114, 782-792.	1.2	30