
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2277909/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Biodistribution of gold nanoparticles and gene expression changes in the liver and spleen after intravenous administration in rats. Biomaterials, 2010, 31, 2034-2042.	11.4	456
2	Role of the Prefrontal Cortex in Pain Processing. Molecular Neurobiology, 2019, 56, 1137-1166.	4.0	397
3	Inhibitors of Brain Phospholipase A2 Activity: Their Neuropharmacological Effects and Therapeutic Importance for the Treatment of Neurologic Disorders. Pharmacological Reviews, 2006, 58, 591-620.	16.0	353
4	Characterization, purification, and stability of gold nanoparticles. Biomaterials, 2010, 31, 9023-9030.	11.4	198
5	Biochemical Aspects of Neurodegeneration in Human Brain: Involvement of Neural Membrane Phospholipids and Phospholipases A2. Neurochemical Research, 2004, 29, 1961-1977.	3.3	171
6	Protective effects of ginseng on neurological disorders. Frontiers in Aging Neuroscience, 2015, 7, 129.	3.4	161
7	Translocation and effects of gold nanoparticles after inhalation exposure in rats. Nanotoxicology, 2007, 1, 235-242.	3.0	121
8	The effect of primary particle size on biodistribution of inhaled gold nano-agglomerates. Biomaterials, 2013, 34, 5439-5452.	11.4	120
9	Iron, neuroinflammation, and Alzheimer's disease. Journal of Alzheimer's Disease, 2005, 8, 183-200.	2.6	112
10	Synthetic and Natural Inhibitors of Phospholipases A ₂ : Their Importance for Understanding and Treatment of Neurological Disorders. ACS Chemical Neuroscience, 2015, 6, 814-831.	3.5	112
11	Nonâ€ŧargeted profiling of lipids during kainateâ€induced neuronal injury. FASEB Journal, 2006, 20, 1152-1161.	O.5	104
12	Comparison of biochemical effects of statins and fish oil in brain: The battle of the titans. Brain Research Reviews, 2007, 56, 443-471.	9.0	97
13	Neurodegeneration in Niemann-Pick type C disease mice. Experimental Brain Research, 2001, 141, 218-231.	1.5	94
14	Large-scale lipidomics identifies associations between plasma sphingolipids and T2DM incidence. JCI Insight, 2019, 4, .	5.0	92
15	Roles of Cholesterol in Vesicle Fusion and Motion. Biophysical Journal, 2009, 97, 1371-1380.	0.5	91
16	The iron chelator desferrioxamine inhibits atherosclerotic lesion development and decreases lesion iron concentrations in the cholesterol-fed rabbit. Free Radical Biology and Medicine, 2005, 38, 1206-1211.	2.9	88
17	Heme oxgenase-1 is expressed in viable astrocytes and microglia but in degenerating pyramidal neurons in the kainate-lesioned rat hippocampus. Experimental Brain Research, 2001, 137, 424-431.	1.5	85
18	Slow Excitotoxicity in Alzheimer's Disease. Journal of Alzheimer's Disease, 2013, 35, 643-668.	2.6	82

#	Article	IF	CITATIONS
19	Ayurvedic Medicine for the Treatment of Dementia: Mechanistic Aspects. Evidence-based Complementary and Alternative Medicine, 2018, 2018, 1-11.	1.2	82
20	Iron, Atherosclerosis, and Neurodegeneration: A Key Role for Cholesterol in Promoting Iron-Dependent Oxidative Damage?. Annals of the New York Academy of Sciences, 2004, 1012, 51-64.	3.8	74
21	Retinoic acid-mediated phospholipase A2 signaling in the nucleus. Brain Research Reviews, 2004, 45, 179-195.	9.0	61
22	Increase in Cholesterol and Cholesterol Oxidation Products, and Role of Cholesterol Oxidation Products in Kainateâ€induced Neuronal Injury. Brain Pathology, 2003, 13, 250-262.	4.1	59
23	Intracerebroventricular injection of phospholipases A2 inhibitors modulates allodynia after facial carrageenan injection in mice. Pain, 2004, 112, 148-155.	4.2	58
24	Lovastatin Modulates Increased Cholesterol and Oxysterol Levels and Has a Neuroprotective Effect on Rat Hippocampal Neurons After Kainate Injury. Journal of Neuropathology and Experimental Neurology, 2006, 65, 652-663.	1.7	56
25	Changes in Brain Cholesterol Metabolome After Excitotoxicity. Molecular Neurobiology, 2010, 41, 299-313.	4.0	54
26	Enterovirus 71 infection of motor neuron-like NSC-34 cells undergoes a non-lytic exit pathway. Scientific Reports, 2016, 6, 36983.	3.3	54
27	Distribution of calcium-independent phospholipase A2 (iPLA2) in monkey brain. Journal of Neurocytology, 2005, 34, 447-458.	1.5	53
28	Plasmalogens, Docosahexaenoic Acid and Neurological Disorders. Advances in Experimental Medicine and Biology, 2003, 544, 335-354.	1.6	53
29	Lipid mediators in the nucleus: Their potential contribution to Alzheimer's disease. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2010, 1801, 906-916.	2.4	50
30	Nose-to-Brain Drug Delivery by Nanoparticles in the Treatment of Neurological Disorders. Current Medicinal Chemistry, 2014, 21, 4247-4256.	2.4	48
31	Expression and localization of the iron–siderophore binding protein lipocalin 2 in the normal rat brain and after kainate-induced excitotoxicity. Neurochemistry International, 2011, 59, 591-599.	3.8	47
32	Increased expression of γ-aminobutyric acid transporters GAT-1 and GAT-3 in the spinal trigeminal nucleus after facial carrageenan injections. Pain, 2001, 92, 29-40.	4.2	46
33	Qi Fu Yin–a Ming Dynasty Prescription for the Treatment of Dementia. Molecular Neurobiology, 2018, 55, 7389-7400.	4.0	45
34	Distribution of hydroxynonenal-modified proteins in the kainate-lesioned rat hippocampus: evidence that hydroxynonenal formation precedes neuronal cell death. Free Radical Biology and Medicine, 2000, 28, 1214-1221.	2.9	44
35	A Flexiâ€PEGDA Upconversion Implant for Wireless Brain Photodynamic Therapy. Advanced Materials, 2020, 32, 2001459.	21.0	44
36	Changes in GABA transporters in the rat hippocampus after kainate-induced neuronal injury: Decrease in GAT-1 and GAT-3 but upregulation of betaine/GABA transporter BGT-1. Journal of Neuroscience Research, 2004, 77, 402-409.	2.9	43

#	Article	IF	CITATIONS
37	Lewy Body–like Inclusions in Human Midbrain Organoids Carrying Glucocerebrosidase and αâ€&ynuclein Mutations. Annals of Neurology, 2021, 90, 490-505.	5.3	43
38	A Nuclear Microscopic Study of Elemental Changes in the Rat Hippocampus After Kainate-Induced Neuronal Injury. Journal of Neurochemistry, 2001, 72, 1574-1579.	3.9	42
39	Postnatal Deletion of Fat Storage-inducing Transmembrane Protein 2 (FIT2/FITM2) Causes Lethal Enteropathy. Journal of Biological Chemistry, 2015, 290, 25686-25699.	3.4	42
40	Antiprion activity of functionalized 9-aminoacridines related to quinacrine. Bioorganic and Medicinal Chemistry, 2008, 16, 6737-6746.	3.0	41
41	MicroRNA changes in the mouse prefrontal cortex after inflammatory pain. European Journal of Pain, 2011, 15, 801.e1-12.	2.8	41
42	Earlyâ€onset axonal pathology in a novel <scp>P</scp> 301 <scp>S</scp> â€ <scp>T</scp> au transgenic mouse model of frontotemporal lobar degeneration. Neuropathology and Applied Neurobiology, 2015, 41, 906-925.	3.2	41
43	Differential effects of calcium-dependent and calcium-independent phospholipase A 2 inhibitors on kainate-induced neuronal injury in rat hippocampal slices. Free Radical Biology and Medicine, 2001, 30, 1263-1273.	2.9	40
44	Localisation of Formyl-Peptide Receptor 2 in the Rat Central Nervous System and Its Role in Axonal and Dendritic Outgrowth. Neurochemical Research, 2018, 43, 1587-1598.	3.3	40
45	A light and electron microscopic study of betaine/GABA transporter distribution in the monkey cerebral neocortex and hippocampus. Journal of Neurocytology, 2004, 33, 233-240.	1.5	37
46	Upregulation of iron regulatory proteins and divalent metal transporter-1 isoforms in the rat hippocampus after kainate induced neuronal injury. Experimental Brain Research, 2006, 170, 376-386.	1.5	37
47	Heme oxygenase-1 activity after excitotoxic injury: Immunohistochemical localization of bilirubin in neurons and astrocytes and deleterious effects of heme oxygenase inhibition on neuronal survival after kainate treatment. Journal of Neuroscience Research, 2005, 80, 268-278.	2.9	35
48	Lipidomic analyses of the mouse brain after antidepressant treatment: evidence for endogenous release of long-chain fatty acids?. International Journal of Neuropsychopharmacology, 2009, 12, 953.	2.1	35
49	Comprehensive Gene Expression Profiling in the Prefrontal Cortex Links Immune Activation and Neutrophil Infiltration to Antinociception. Journal of Neuroscience, 2012, 32, 35-45.	3.6	35
50	Role of sphingomyelinases in neurological disorders. Expert Opinion on Therapeutic Targets, 2015, 19, 1725-1742.	3.4	35
51	Effect of Ergothioneine on 7-Ketocholesterol-Induced Endothelial Injury. NeuroMolecular Medicine, 2021, 23, 184-198.	3.4	35
52	Ultrastructural Characteristics of DHA-Induced Pyroptosis. NeuroMolecular Medicine, 2020, 22, 293-303.	3.4	33
53	Effects of cholesterol oxidation products on exocytosis. Neuroscience Letters, 2010, 476, 36-41.	2.1	32
54	Effects of Antimalarial Drugs on Neuroinflammation-Potential Use for Treatment of COVID-19-Related Neurologic Complications. Molecular Neurobiology, 2021, 58, 106-117.	4.0	32

#	Article	IF	CITATIONS
55	Apolipoprotein D modulates F2-isoprostane and 7-ketocholesterol formation and has a neuroprotective effect on organotypic hippocampal cultures after kainate-induced excitotoxic injury. Neuroscience Letters, 2009, 455, 183-186.	2.1	31
56	Pleotropic Roles of Autotaxin in the Nervous System Present Opportunities for the Development of Novel Therapeutics for Neurological Diseases. Molecular Neurobiology, 2020, 57, 372-392.	4.0	31
57	Clinacanthus nutans Protects Cortical Neurons Against Hypoxia-Induced Toxicity by Downregulating HDAC1/6. NeuroMolecular Medicine, 2016, 18, 274-282.	3.4	30
58	Changes in cholesterol biosynthetic and transport pathways after excitotoxicity. Journal of Neurochemistry, 2010, 112, 34-41.	3.9	29
59	Neuroprotection Abilities of Cytosolic Phospholipase A2 Inhibitors in Kainic acid-induced Neurodegeneration. Current Drug Targets Cardiovascular & Haematological Disorders, 2004, 4, 85-96.	2.0	28
60	Stable iron isotope tracing reveals significant brain iron uptake in adult rats. Metallomics, 2013, 5, 167.	2.4	28
61	Distribution of Alox15 in the Rat Brain and Its Role in Prefrontal Cortical Resolvin D1 Formation and Spatial Working Memory. Molecular Neurobiology, 2018, 55, 1537-1550.	4.0	28
62	A Light and Electron Microscopic Study of Divalent Metal Transporter-1 Distribution in the Rat Hippocampus, after Kainate-Induced Neuronal Injury. Experimental Neurology, 2002, 177, 193-201.	4.1	27
63	Antinociceptive effect of CNS peroxynitrite scavenger in a mouse model of orofacial pain. Experimental Brain Research, 2008, 184, 435-438.	1.5	27
64	Quinacrine abolishes increases in cytoplasmic phospholipase A2 mRNA levels in the rat hippocampus after kainate-induced neuronal injury. Experimental Brain Research, 2003, 148, 521-524.	1.5	26
65	Immunocytochemical localization of apolipoprotein D in oligodendrocyte precursor-like cells, perivascular cells, and pericytes in the human cerebral cortex. Journal of Neurocytology, 2001, 30, 209-218.	1.5	25
66	Differential effects of ceramide species on exocytosis in rat PC12 cells. Experimental Brain Research, 2007, 183, 241-247.	1.5	25
67	Short- and long-term changes in blood miRNA levels after nanogold injection in rats—potential biomarkers of nanoparticle exposure. Biomarkers, 2012, 17, 750-757.	1.9	25
68	YY-1224, a terpene trilactone-strengthened Ginkgo biloba, attenuates neurodegenerative changes induced by β-amyloid (1-42) or double transgenic overexpression of APP and PS1 via inhibition of cyclooxygenase-2. Journal of Neuroinflammation, 2017, 14, 94.	7.2	25
69	A light and electron microscopic study of the GABA transporter GAT-3 in the monkey basal ganglia and brainstem. Journal of Neurocytology, 2000, 29, 595-603.	1.5	24
70	Changes in AMPA subunit expression in the mouse brain after chronic treatment with the antidepressant maprotiline: a link between noradrenergic and glutamatergic function?. Experimental Brain Research, 2006, 170, 448-456.	1.5	24
71	Brain Isoprenoids Farnesyl Pyrophosphate and Geranylgeranyl Pyrophosphate are Increased in Aged Mice. Molecular Neurobiology, 2012, 46, 179-185.	4.0	24
72	The phospholipase A 2 inhibitor quinacrine prevents increased immunoreactivity to cytoplasmic phospholipase A 2 (cPLA 2) and hydroxynonenal (HNE) in neurons of the lateral septum following fimbria-fornix transection. Experimental Brain Research, 2001, 138, 500-508.	1.5	21

#	Article	IF	CITATIONS
73	Elevated oxidative stress, iron accumulation around microvessels and increased 4-hydroxynonenal immunostaining in zone 1 of the liver acinus in hypercholesterolemic rabbits. Free Radical Research, 2009, 43, 241-249.	3.3	21
74	Expression and localisation of brain-type organic cation transporter (BOCT/24p3R/LCN2R) in the normal rat hippocampus and after kainate-induced excitotoxicity. Neurochemistry International, 2015, 87, 43-59.	3.8	21
75	Clinacanthus nutans Mitigates Neuronal Apoptosis and Ischemic Brain Damage Through Augmenting the C/EBPβ-Driven PPAR-I³ Transcription. Molecular Neurobiology, 2018, 55, 5425-5438.	4.0	20
76	Effects of intracerebroventricular injections of free fatty acids, lysophospholipids, or platelet activating factor in a mouse model of orofacial pain. Experimental Brain Research, 2006, 174, 781-785.	1.5	19
77	Differential effects of lysophospholipids on exocytosis in rat PC12 cells. Journal of Neural Transmission, 2010, 117, 301-308.	2.8	19
78	Enriched Expression of Neutral Sphingomyelinase 2 in the Striatum is Essential for Regulation of Lipid Raft Content and Motor Coordination. Molecular Neurobiology, 2018, 55, 5741-5756.	4.0	19
79	Lysophosphatidic acid and its receptor LPA1 mediate carrageenan induced inflammatory pain in mice. European Journal of Pharmacology, 2018, 841, 49-56.	3.5	19
80	Activation of sphingosine 1-phosphate receptor 2 attenuates chemotherapy-induced neuropathy. Journal of Biological Chemistry, 2020, 295, 1143-1152.	3.4	19
81	Increased iron staining in the cerebral cortex of cholesterol fed rabbits. Mechanisms of Ageing and Development, 2004, 125, 305-313.	4.6	18
82	Ceruloplasmin is an endogenous protectant against kainate neurotoxicity. Free Radical Biology and Medicine, 2015, 84, 355-372.	2.9	18
83	P2 purinoceptor blocker suramin antagonises NMDA receptors and protects against excitatory behaviour caused by NMDA receptor agonist (RS)-(tetrazol-5-yl)-glycine in rats. Journal of Neuroscience Research, 1997, 49, 627-638.	2.9	17
84	The Birth of Neurochemical Maps. Neurochemical Research, 2006, 31, 125-126.	3.3	17
85	Neuronal Activity-Induced Sterol Regulatory Element Binding Protein-1 (SREBP1) is Disrupted in Dysbindin-Null Mice—Potential Link to Cognitive Impairment in Schizophrenia. Molecular Neurobiology, 2017, 54, 1699-1709.	4.0	17
86	Apolipoprotein D in the Niemann-Pick type C disease mouse brain: an ultrastructural immunocytochemical analysis. Journal of Neurocytology, 2002, 31, 121-129.	1.5	16
87	Expression, activity, and role of serine palmitoyltransferase in the rat hippocampus after kainate injury. Journal of Neuroscience Research, 2007, 85, 423-432.	2.9	16
88	Localization of the transcription factor, sterol regulatory element binding protein-2 (SREBP-2) in the normal rat brain and changes after kainate-induced excitotoxic injury. Journal of Chemical Neuroanatomy, 2009, 37, 71-77.	2.1	16
89	A nuclear microscopic and histochemical study of iron concentrations and distribution in the midbrain of two age groups of monkeys unilaterally injected with MPTP. Experimental Neurology, 2003, 184, 947-954.	4.1	15
90	Global gene expression analysis in the mouse brainstem after hyperalgesia induced by facial carrageenan injection – Evidence for a form of neurovascular coupling?. Pain, 2009, 142, 133-141.	4.2	15

#	Article	IF	CITATIONS
91	Role of prefrontal cortical calcium independent phospholipase A2 in antidepressant-like effect of maprotiline. International Journal of Neuropsychopharmacology, 2012, 15, 1087-1098.	2.1	15
92	Comprehensive Gene Expression Profiling Reveals Synergistic Functional Networks in Cerebral Vessels after Hypertension or Hypercholesterolemia. PLoS ONE, 2013, 8, e68335.	2.5	15
93	Metabolism of Docosahexaenoic Acid (DHA) Induces Pyroptosis in BV-2 Microglial Cells. NeuroMolecular Medicine, 2018, 20, 504-514.	3.4	15
94	A light and electron microscopic study of glutamate receptors in the monkey subthalamic nucleus. Journal of Neurocytology, 2000, 29, 743-754.	1.5	14
95	Changes in cytochrome P450 side chain cleavage expression in the rat hippocampus after kainate injury. Experimental Brain Research, 2008, 186, 143-149.	1.5	14
96	The S1P2 receptor regulates blood-brain barrier integrity and leukocyte extravasation with implications for neurodegenerative disease. Neurochemistry International, 2021, 146, 105018.	3.8	14
97	Kainate-induced neuronal injury leads to persistent phosphorylation of cAMP response element-binding protein in glial and endothelial cells in the hippocampus. Experimental Brain Research, 2000, 131, 178-186.	1.5	13
98	Anti-allodynic effect of intracerebroventricularly administered antioxidant and free radical scavenger in a mouse model of orofacial pain. Journal of Orofacial Pain, 2009, 23, 167-73.	1.7	13
99	ACE2, Circumventricular Organs and the Hypothalamus, and COVID-19. NeuroMolecular Medicine, 2022, 24, 363-373.	3.4	13
100	Distribution of ferritin in the rat hippocampus after kainate-induced neuronal injury. Experimental Brain Research, 2005, 161, 502-511.	1.5	12
101	Role of calcium-independent phospholipase A2 in cortex striatum thalamus cortex circuitry–enzyme inhibition causes vacuous chewing movements in rats. Psychopharmacology, 2007, 195, 387-395.	3.1	12
102	Distribution of Secretory Phospholipase A2 XIIA in the Brain and its Role in Lipid Metabolism and Cognition. Molecular Neurobiology, 2014, 50, 60-75.	4.0	11
103	Clinacanthus nutans Extracts Modulate Epigenetic Link to Cytosolic Phospholipase A2 Expression in SH-SY5Y Cells and Primary Cortical Neurons. NeuroMolecular Medicine, 2016, 18, 441-452.	3.4	11
104	Global gene expression changes in the prefrontal cortex of rabbits with hypercholesterolemia and/or hypertension. Neurochemistry International, 2017, 102, 33-56.	3.8	10
105	Potential Therapeutic Applications for Inhibitors of Autotaxin, a Bioactive Lipid-Producing Lysophospholipase D, in Disorders Affecting the Nervous System. ACS Chemical Neuroscience, 2018, 9, 398-400.	3.5	10
106	Expression of DHA-Metabolizing Enzyme Alox15 is Regulated by Selective Histone Acetylation in Neuroblastoma Cells. Neurochemical Research, 2018, 43, 540-555.	3.3	10
107	Anti-inflammatory and Cytoprotective Effect of Clinacanthus nutans Leaf But Not Stem Extracts on 7-Ketocholesterol Induced Brain Endothelial Cell Injury. NeuroMolecular Medicine, 2021, 23, 176-183.	3.4	10
108	Induction of astrocytic cytoplasmic phospholipase A2 and neuronal death after intracerebroventricular carrageenan injection, and neuroprotective effects of quinacrine. Experimental Neurology, 2003, 183, 449-457.	4.1	9

#	Article	IF	CITATIONS
109	Injury and recovery of pyramidal neurons in the rat hippocampus after a single episode of oxidative stress induced by intracerebroventricular injection of ferrous ammonium citrate. Reproduction, Nutrition, Development, 2005, 45, 647-662.	1.9	9
110	Role of Calcium Independent Phospholipase A2 in Maintaining Mitochondrial Membrane Potential and Preventing Excessive Exocytosis in PC12 Cells. Neurochemical Research, 2011, 36, 347-354.	3.3	9
111	Kainate Receptors Mediate Regulated Exocytosis of Secretory Phospholipase A2 in SH-SY5Y Neuroblastoma Cells. NeuroSignals, 2012, 20, 72-85.	0.9	9
112	Role of constitutive calcium-independent phospholipase A2 beta in hippocampo-prefrontal cortical long term potentiation and spatial working memory. Neurochemistry International, 2014, 78, 96-104.	3.8	9
113	Epigenetic Regulation of Cytosolic Phospholipase A2 in SH-SY5Y Human Neuroblastoma Cells. Molecular Neurobiology, 2016, 53, 3854-3872.	4.0	9
114	The Analgesic and Anxiolytic Effect of Souvenaid, a Novel Nutraceutical, Is Mediated by Alox15 Activity in the Prefrontal Cortex. Molecular Neurobiology, 2017, 54, 6032-6045.	4.0	9
115	Sphingolipidomics analysis of large clinical cohorts. Part 2: Potential impact and applications. Biochemical and Biophysical Research Communications, 2018, 504, 602-607.	2.1	9
116	Anti-Inflammatory Effects of Phytochemical Components of Clinacanthus nutans. Molecules, 2022, 27, 3607.	3.8	9
117	Expression profile of multiple secretory phospholipase A2 isoforms in the rat CNS: Enriched expression of sPLA2-IIA in brainstem and spinal cord. Journal of Chemical Neuroanatomy, 2010, 39, 242-247.	2.1	8
118	Comprehensive gene expression analyses of the rat prefrontal cortex after oxysterol treatment. Journal of Neurochemistry, 2013, 124, 770-781.	3.9	8
119	The noncanonical chronicles: Emerging roles of sphingolipid structural variants. Cellular Signalling, 2021, 79, 109890.	3.6	8
120	Role of phospholipase A2 in prepulse inhibition of the auditory startle reflex in rats. Neuroscience Letters, 2009, 453, 6-8.	2.1	6
121	Brain lipid changes after repetitive transcranial magnetic stimulation: potential links to therapeutic effects?. Metabolomics, 2012, 8, 19-33.	3.0	6
122	Expression and Localization of sPLA2-III in the Rat CNS. Neurochemical Research, 2013, 38, 753-760.	3.3	6
123	Docosahexaenoic acid and <scp>l</scp> arnitine prevent ATP loss in SH Y5Y neuroblastoma cells after exposure to silver nanoparticles. Environmental Toxicology, 2016, 31, 224-232.	4.0	6
124	Preclinical and Clinical Evidence for the Involvement of Sphingosine 1-Phosphate Signaling in the Pathophysiology of Vascular Cognitive Impairment. NeuroMolecular Medicine, 2021, 23, 47-67.	3.4	6
125	Loss of FEZ1, a gene deleted in Jacobsen syndrome, causes locomotion defects and early mortality by impairing motor neuron development. Human Molecular Genetics, 2021, 30, 5-20.	2.9	6
126	Role of formyl peptide receptor 2 (FPR2) in the normal brain and in neurological conditions. Neural Regeneration Research, 2019, 14, 2071.	3.0	6

#	Article	IF	CITATIONS
127	Role of prefrontal cortical calcium-independent phospholipase A 2 in antinociceptive effect of the norepinephrine reuptake inhibitor antidepresssant maprotiline. Neuroscience, 2017, 340, 91-100.	2.3	5
128	Oxidative stress reduces levels of dysbindin-1A via its PEST domain. Neurochemistry International, 2014, 79, 65-69.	3.8	4
129	Regulation of Calcium-Independent Phospholipase A2 Expression by Adrenoceptors and Sterol Regulatory Element Binding Protein—Potential Crosstalk Between Sterol and Clycerophospholipid Mediators. Molecular Neurobiology, 2016, 53, 500-517.	4.0	4
130	Effect of Withanolide A on 7-Ketocholesterol Induced Cytotoxicity in hCMEC/D3 Brain Endothelial Cells. Cells, 2022, 11, 457.	4.1	4
131	Nutraceuticals in Neurodegeneration and Aging. NeuroMolecular Medicine, 2016, 18, 239-240.	3.4	3
132	What Do Randomized Controlled Trials Inform Us About Potential Disease-Modifying Strategies for Parkinson's Disease?. NeuroMolecular Medicine, 2023, 25, 1-13.	3.4	3
133	Differential regulation of cPLA2 and iPLA2 expression in the brain. Frontiers in Biology, 2012, 7, 514-521.	0.7	2
134	Photodynamic Therapy: A Flexiâ€PEGDA Upconversion Implant for Wireless Brain Photodynamic Therapy (Adv. Mater. 29/2020). Advanced Materials, 2020, 32, 2070219.	21.0	2
135	Clinacanthus nutans Mitigates Neuronal Death and Reduces Ischemic Brain Injury: Role of NF-κB-driven IL-1β Transcription. NeuroMolecular Medicine, 2021, 23, 199-210.	3.4	2
136	Iron and Epilepsy. , 2003, , 365-398.		2
137	Stimulation of Lipases and Phospholipases in Alzheimer Disease. , 2003, , .		2
138	Glutamate Receptors and Neurological Disorders. , 2008, , 161-203.		1
139	Glutamate Receptors and Their Association with Other Neurochemical Parameters in Excitotoxicity. , 2008, , 105-136.		1
140	P2 purinoceptor blocker suramin antagonises NMDA receptors and protects against excitatory behaviour caused by NMDA receptor agonist (RS)-(tetrazol-5-yl)-glycine in rats. , 1997, 49, 627.		1
141	Possible Mechanisms of Neural Injury Caused by Glutamate and Its Receptors. , 2008, , 137-160.		1
142	Excitatory Amino Acid Receptors in Brain. , 2008, , 21-35.		1
143	Endogenous Antioxidant Mechanisms and Glutamate Neurotoxicity. , 2008, , 205-240.		0
144	Editorial (Thematic Issue: Neuronanomedicine - (Part I)). Current Medicinal Chemistry, 2014, 21, 4091-4091.	2.4	0

#	Article	IF	CITATIONS
145	Editorial: Neuronanomedicine - (Part II). Current Medicinal Chemistry, 2014, 21, 4199-4199.	2.4	Ο
146	Design, Synthesis and Evaluation of New Indolylpyrimidylpiperazines for Gastrointestinal Cancer Therapy. Molecules, 2019, 24, 3661.	3.8	0
147	Excitatory Amino Acid Receptors and Their Association with Neural Membrane Glycerophospholipid Metabolism. , 2008, , 75-103.		0