Yao-Wei Huang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2277424/publications.pdf

Version: 2024-02-01

93 papers 4,497 citations

36 h-index 64 g-index

96 all docs 96
docs citations

96 times ranked 4471 citing authors

#	Article	IF	CITATIONS
1	A novel spike subunit 1â€based enzymeâ€linked immunosorbent assay reveals widespread porcine torovirus infection in eastern China. Transboundary and Emerging Diseases, 2022, 69, 598-608.	1.3	2
2	Review: A systematic review of virus-like particles of coronavirus: Assembly, generation, chimerism and their application in basic research and in the clinic. International Journal of Biological Macromolecules, 2022, 200, 487-497.	3.6	5
3	Revisiting the Mongolian Gerbil Model for Hepatitis E Virus by Reverse Genetics. Microbiology Spectrum, 2022, 10, e0219321.	1.2	7
4	First evidence that an emerging mammalian alphacoronavirus is able to infect an avian species. Transboundary and Emerging Diseases, 2022, 69, .	1.3	17
5	Bile acids promote the caveolae-associated entry of swine acute diarrhea syndrome coronavirus in porcine intestinal enteroids. PLoS Pathogens, 2022, 18, e1010620.	2.1	14
6	Expression Profile and Localization of SARS-CoV-2 Nonstructural Replicase Proteins in Infected Cells. Microbiology Spectrum, 2022, 10, .	1.2	11
7	Development and Clinical Applications of a 5-Plex Real-Time RT-PCR for Swine Enteric Coronaviruses. Viruses, 2022, 14, 1536.	1.5	14
8	Development of Improved Mumps Vaccine Candidates by Mutating Viral mRNA Cap Methyltransferase Sites in the Large Polymerase Protein. Virologica Sinica, 2021, 36, 521-536.	1.2	3
9	Third update on possible animal sources for human COVIDâ€19. Xenotransplantation, 2021, 28, e12671.	1.6	6
10	Lysosomal ion channels involved in cellular entry and uncoating of enveloped viruses: Implications for therapeutic strategies against SARS-CoV-2. Cell Calcium, 2021, 94, 102360.	1.1	26
11	The porcine deltacoronavirus accessory protein NS6 is expressed in vivo and incorporated into virions. Virology, 2021, 556, 1-8.	1.1	7
12	High-throughput sequencing of the porcine antibody repertoire with or without PEDV infection: A proof-of-concept study. Journal of Virological Methods, 2021, 292, 114125.	1.0	1
13	A Comparative Analysis of Coronavirus Nucleocapsid (N) Proteins Reveals the SADS-CoV N Protein Antagonizes IFN-Î ² Production by Inducing Ubiquitination of RIG-I. Frontiers in Immunology, 2021, 12, 688758.	2.2	26
14	Expression of the human or porcine C-type lectins DC-SIGN/L-SIGN confers susceptibility to porcine epidemic diarrhea virus entry and infection in otherwise refractory cell lines. Microbial Pathogenesis, 2021, 157, 104956.	1.3	6
15	Roles of Two Major Domains of the Porcine Deltacoronavirus S1 Subunit in Receptor Binding and Neutralization. Journal of Virology, 2021, 95, e0111821.	1.5	38
16	PABPC4 Broadly Inhibits Coronavirus Replication by Degrading Nucleocapsid Protein through Selective Autophagy. Microbiology Spectrum, 2021, 9, e0090821.	1.2	26
17	Further information on possible animal sources for human COVIDâ€19. Xenotransplantation, 2020, 27, e12651.	1.6	11
18	Stable Expression of a Hepatitis E Virus (HEV) RNA Replicon in Two Mammalian Cell Lines to Assess Mechanism of Innate Immunity and Antiviral Response. Frontiers in Microbiology, 2020, 11, 603699.	1.5	9

#	Article	IF	CITATIONS
19	Swine enteric alphacoronavirus (swine acute diarrhea syndrome coronavirus): An update three years after its discovery. Virus Research, 2020, 285, 198024.	1.1	73
20	Genomic Epidemiology, Evolution, and Transmission Dynamics of Porcine Deltacoronavirus. Molecular Biology and Evolution, 2020, 37, 2641-2654.	3. 5	76
21	Update on possible animal sources for COVIDâ€19 in humans. Xenotransplantation, 2020, 27, e12621.	1.6	12
22	Coronavirus disease 2019 (COVIDâ€19) outbreak: Could pigs be vectors for human infections?. Xenotransplantation, 2020, 27, e12591.	1.6	33
23	SARS-CoV-2 is an appropriate name for the new coronavirus. Lancet, The, 2020, 395, 949-950.	6. 3	264
24	Trypsin promotes porcine deltacoronavirus mediating cell-to-cell fusion in a cell type-dependent manner. Emerging Microbes and Infections, 2020, 9, 457-468.	3.0	27
25	Characterization of a novel bat-HKU2-like swine enteric alphacoronavirus (SeACoV) infection in cultured cells and development of a SeACoV infectious clone. Virology, 2019, 536, 110-118.	1.1	43
26	Broad Cross-Species Infection of Cultured Cells by Bat HKU2-Related Swine Acute Diarrhea Syndrome Coronavirus and Identification of Its Replication in Murine Dendritic Cells <i>In Vivo</i> Highlight Its Potential for Diverse Interspecies Transmission. Journal of Virology, 2019, 93, .	1.5	84
27	Specific recombinant proteins of porcine epidemic diarrhea virus are immunogenic, revealing their potential use as diagnostic markers. Veterinary Microbiology, 2019, 236, 108387.	0.8	8
28	Porcine Torovirus (PToV)â€"A Brief Review of Etiology, Diagnostic Assays and Current Epidemiology. Frontiers in Veterinary Science, 2019, 6, 120.	0.9	17
29	Characteristics of the Life Cycle of Porcine Deltacoronavirus (PDCoV) In Vitro: Replication Kinetics, Cellular Ultrastructure and Virion Morphology, and Evidence of Inducing Autophagy. Viruses, 2019, 11, 455.	1.5	40
30	Evidence for an unknown agent antigenically related to the hepatitis E virus in dairy cows in the United States. Journal of Medical Virology, 2019, 91, 677-686.	2.5	23
31	Aminopeptidase-N-independent entry of porcine epidemic diarrhea virus into Vero or porcine small intestine epithelial cells. Virology, 2018, 517, 16-23.	1.1	57
32	Porcine Deltacoronavirus Engages the Transmissible Gastroenteritis Virus Functional Receptor Porcine Aminopeptidase N for Infectious Cellular Entry. Journal of Virology, 2018, 92, .	1.5	86
33	Roles of the genomic sequence surrounding the stemâ \in loop structure in the junction region including the 3â \in 2 terminus of open reading frame 1 in hepatitis E virus replication. Journal of Medical Virology, 2018, 90, 1524-1531.	2.5	9
34	Enhancement of safety and immunogenicity of the Chinese Hu191 measles virus vaccine by alteration of the S-adenosylmethionine (SAM) binding site in the large polymerase protein. Virology, 2018, 518, 210-220.	1.1	15
35	Identification of a peptide derived from the heptad repeat 2 region of the porcine epidemic diarrhea virus (PEDV) spike glycoprotein that is capable of suppressing PEDV entry and inducing neutralizing antibodies. Antiviral Research, 2018, 150, 1-8.	1.9	24
36	Lck/Hck/Fgr-Mediated Tyrosine Phosphorylation Negatively Regulates TBK1 to Restrain Innate Antiviral Responses. Cell Host and Microbe, 2017, 21, 754-768.e5.	5.1	29

#	Article	IF	CITATIONS
37	Discovery of a novel swine enteric alphacoronavirus (SeACoV) in southern China. Veterinary Microbiology, 2017, 211, 15-21.	0.8	193
38	Genetic and pathogenic characterization of a novel reassortant mammalian orthoreovirus 3 (MRV3) from a diarrheic piglet and seroepidemiological survey of MRV3 in diarrheic pigs from east China. Veterinary Microbiology, 2017, 208, 126-136.	0.8	41
39	Efficient priming of CD4 T cells by Langerin-expressing dendritic cells targeted with porcine epidemic diarrhea virus spike protein domains in pigs. Virus Research, 2017, 227, 212-219.	1.1	22
40	Prevalence of the Novel <i>Torque Teno Sus Virus</i> Species k2b from Pigs in the United States and Lack of Association with Post-Weaning Multisystemic Wasting Syndrome or Mulberry Heart Disease. Transboundary and Emerging Diseases, 2017, 64, 1877-1883.	1.3	14
41	Development and Application of an ELISA for the Detection of Porcine Deltacoronavirus IgG Antibodies. PLoS ONE, 2015, 10, e0124363.	1.1	48
42	Complete Genome Sequence of Porcine Deltacoronavirus Strain CH/Sichuan/S27/2012 from Mainland China. Genome Announcements, 2015, 3, .	0.8	51
43	Evidence of Recombinant Strains of Porcine Epidemic Diarrhea Virus, United States, 2013. Emerging Infectious Diseases, 2014, 20, 1731-1734.	2.0	85
44	High-Efficiency Broadband Meta-Hologram with Polarization-Controlled Dual Images. Nano Letters, 2014, 14, 225-230.	4.5	655
45	RNA transcripts of full-length cDNA clones of rabbit hepatitis E virus are infectious in rabbits. Journal of General Virology, 2014, , .	1.3	1
46	In vivo targeting of porcine reproductive and respiratory syndrome virus antigen through porcine DC-SIGN to dendritic cells elicits antigen-specific CD4T cell immunity in pigs. Vaccine, 2014, 32, 6768-6775.	1.7	21
47	Detection of antibodies against porcine epidemic diarrhea virus in serum and colostrum by indirect ELISA. Veterinary Journal, 2014, 202, 33-36.	0.6	76
48	Development and validation of a 4-plex antibody assay for simultaneous detection of IgG antibodies against Torque teno sus virus 1 (TTSuV1), TTSuV2, and porcine reproductive and respiratory syndrome virus types 1 and 2. Research in Veterinary Science, 2014, 96, 543-550.	0.9	6
49	Infectivity of a genotype 4 hepatitis E virus cDNA clone by intrahepatic inoculation of laboratory rats. Veterinary Microbiology, 2013, 166, 405-411.	0.8	9
50	Fabrication of three-dimensional plasmonic cavity by femtosecond laser-induced forward transfer. Optics Express, 2013, 21, 618.	1.7	22
51	Origin, Evolution, and Genotyping of Emergent Porcine Epidemic Diarrhea Virus Strains in the United States. MBio, 2013, 4, e00737-13.	1.8	442
52	Attenuation of Porcine Reproductive and Respiratory Syndrome Virus by Molecular Breeding of Virus Envelope Genes from Genetically Divergent Strains. Journal of Virology, 2013, 87, 304-313.	1.5	34
53	Broadening the Heterologous Cross-Neutralizing Antibody Inducing Ability of Porcine Reproductive and Respiratory Syndrome Virus by Breeding the GP4 or M genes. PLoS ONE, 2013, 8, e66645.	1.1	24
54	Rescue of a Porcine Anellovirus (Torque Teno Sus Virus 2) from Cloned Genomic DNA in Pigs. Journal of Virology, 2012, 86, 6042-6054.	1.5	27

#	Article	IF	CITATIONS
55	Serological Profile of Torque Teno Sus Virus Species 1 (TTSuV1) in Pigs and Antigenic Relationships between Two TTSuV1 Genotypes (1a and 1b), between Two Species (TTSuV1 and -2), and between Porcine and Human Anelloviruses. Journal of Virology, 2012, 86, 10628-10639.	1.5	24
56	Rescue of a genotype 4 human hepatitis E virus from cloned cDNA and characterization of intergenotypic chimeric viruses in cultured human liver cells and in pigs. Journal of General Virology, 2012, 93, 2183-2194.	1.3	49
57	The PSAP Motif within the ORF3 Protein of an Avian Strain of the Hepatitis E Virus Is Not Critical for Viral Infectivity <i>In Vivo</i> but Plays a Role in Virus Release. Journal of Virology, 2012, 86, 5637-5646.	1.5	44
58	Fast Fabrication of a Ag Nanostructure Substrate Using the Femtosecond Laser for Broad-Band and Tunable Plasmonic Enhancement. ACS Nano, 2012, 6, 5190-5197.	7.3	67
59	DNA shuffling of the GP3 genes of porcine reproductive and respiratory syndrome virus (PRRSV) produces a chimeric virus with an improved cross-neutralizing ability against a heterologous PRRSV strain. Virology, 2012, 434, 96-109.	1.1	45
60	The prevalence of Torque teno sus virus (TTSuV) is common and increases with the age of growing pigs in the United States. Journal of Virological Methods, 2012, 183, 40-44.	1.0	38
61	Intergenotypic chimeric hepatitis E viruses (HEVs) with the genotype 4 human HEV capsid gene in the backbone of genotype 3 swine HEV are infectious in pigs. Virus Research, 2011, 156, 141-146.	1.1	40
62	Expression of the putative ORF1 capsid protein of Torque teno sus virus 2 (TTSuV2) and development of Western blot and ELISA serodiagnostic assays: Correlation between TTSuV2 viral load and IgG antibody level in pigs. Virus Research, 2011, 158, 79-88.	1.1	41
63	Prior infection of pigs with a genotype 3 swine hepatitis E virus (HEV) protects against subsequent challenges with homologous and heterologous genotypes 3 and 4 human HEV. Virus Research, 2011, 159, 17-22.	1.1	46
64	Establishment of a DNA-launched infectious clone for a highly pneumovirulent strain of type 2 porcine reproductive and respiratory syndrome virus: Identification and in vitro and in vivo characterization of a large spontaneous deletion in the nsp2 region. Virus Research, 2011, 160, 264-273.	1.1	50
65	An experimental live chimeric porcine circovirus 1-2a vaccine decreases porcine circovirus 2b viremia when administered intramuscularly or orally in a porcine circovirus 2b and porcine reproductive and respiratory syndrome virus dual-challenge model. Microbiology and Immunology, 2011, 55, 863-873.	0.7	11
66	Construction of an infectious cDNA clone of avian hepatitis E virus (avian HEV) recovered from a clinically healthy chicken in the United States and characterization of its pathogenicity in specific-pathogen-free chickens. Veterinary Microbiology, 2011, 147, 310-319.	0.8	21
67	Porcine reproductive and respiratory syndrome virus (PRRSV) influences infection dynamics of porcine circovirus type 2 (PCV2) subtypes PCV2a and PCV2b by prolonging PCV2 viremia and shedding. Veterinary Microbiology, 2011, 152, 235-246.	0.8	44
68	Mutational Analysis of the Hypervariable Region of Hepatitis E Virus Reveals Its Involvement in the Efficiency of Viral RNA Replication. Journal of Virology, 2011, 85, 10031-10040.	1.5	66
69	A Live-Attenuated Chimeric Porcine Circovirus Type 2 (PCV2) Vaccine Is Transmitted to Contact Pigs but Is Not Upregulated by Concurrent Infection with Porcine Parvovirus (PPV) and Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) and Is Efficacious in a PCV2b-PRRSV-PPV Challenge Model. Vaccine Journal. 2011. 18. 1261-1268.	3.2	31
70	Three Amino Acid Mutations (F51L, T59A, and S390L) in the Capsid Protein of the Hepatitis E Virus Collectively Contribute to Virus Attenuation. Journal of Virology, 2011, 85, 5338-5349.	1.5	26
71	Development of SYBR green-based real-time PCR and duplex nested PCR assays for quantitation and differential detection of species- or type-specific porcine Torque teno viruses. Journal of Virological Methods, 2010, 170, 140-146.	1.0	20
72	Multiple infection of porcine Torque teno virus in a single pig and characterization of the full-length genomic sequences of four U.S. prototype PTTV strains: Implication for genotyping of PTTV. Virology, 2010, 396, 289-297.	1.1	59

#	Article	IF	Citations
73	The Nucleotides on the Stem-Loop RNA Structure in the Junction Region of the Hepatitis E Virus Genome Are Critical for Virus Replication. Journal of Virology, 2010, 84, 13040-13044.	1.5	63
74	Porcine Reproductive and Respiratory Syndrome Virus Infection at the Time of Porcine Circovirus Type 2 Vaccination Has No Impact on Vaccine Efficacy. Vaccine Journal, 2010, 17, 1940-1945.	3.2	14
75	Comparison of commercial and experimental porcine circovirus type 2 (PCV2) vaccines using a triple challenge with PCV2, porcine reproductive and respiratory syndrome virus (PRRSV), and porcine parvovirus (PPV). Vaccine, 2010, 28, 5960-5966.	1.7	55
76	Novel strategies and approaches to develop the next generation of vaccines against porcine reproductive and respiratory syndrome virus (PRRSV). Virus Research, 2010, 154, 141-149.	1.1	86
77	Deletions of the Hypervariable Region (HVR) in Open Reading Frame 1 of Hepatitis E Virus Do Not Abolish Virus Infectivity: Evidence for Attenuation of HVR Deletion Mutants In Vivo. Journal of Virology, 2009, 83, 384-395.	1.5	79
78	Porcine DC-SIGN: Molecular cloning, gene structure, tissue distribution and binding characteristics. Developmental and Comparative Immunology, 2009, 33, 464-480.	1.0	52
79	Identification and characterization of a porcine monocytic cell line supporting porcine reproductive and respiratory syndrome virus (PRRSV) replication and progeny virion production by using an improved DNA-launched PRRSV reverse genetics system. Virus Research, 2009, 145, 1-8.	1.1	16
80	Interferon-mediated enhancement of in vitro replication of porcine circovirus type 2 is influenced by an interferon-stimulated response element in the PCV2 genome. Virus Research, 2009, 145, 236-243.	1,1	36
81	Crossâ€species infection of specificâ€pathogenâ€free pigs by a genotype 4 strain of human hepatitis E virus. Journal of Medical Virology, 2008, 80, 1379-1386.	2.5	95
82	Purification of the major envelop protein GP5 of porcine reproductive and respiratory syndrome virus (PRRSV) from native virions. Journal of Virological Methods, 2008, 147, 127-135.	1.0	12
83	Initiation at the Third In-Frame AUG Codon of Open Reading Frame 3 of the Hepatitis E Virus Is Essential for Viral Infectivity In Vivo. Journal of Virology, 2007, 81, 3018-3026.	1.5	140
84	Oral DNA vaccination with the polyprotein gene of infectious bursal disease virus (IBDV) delivered by attenuated Salmonella elicits protective immune responses in chickens. Vaccine, 2006, 24, 5919-5927.	1.7	32
85	Generation of VP5 deficient mutant of infectious bursal disease virus strain HZ2. Science Bulletin, 2006, 51, 1909-1912.	1.7	О
86	Capped RNA Transcripts of Full-Length cDNA Clones of Swine Hepatitis E Virus Are Replication Competent When Transfected into Huh7 Cells and Infectious When Intrahepatically Inoculated into Pigs. Journal of Virology, 2005, 79, 1552-1558.	1.5	70
87	Synthesis of Reassortant Infectious Bursal Disease Virus in Chickens Injected Directly with Infectious Clones from Different Virus Strains. Acta Biochimica Et Biophysica Sinica, 2005, 37, 192-198.	0.9	2
88	Synthesis of Reassortant Infectious Bursal Disease Virus in Chickens Injected Directly with Infectious Clones from Different Virus Strains. Acta Biochimica Et Biophysica Sinica, 2005, 37, 192-198.	0.9	1
89	Enhancement of the immunogenicity of DNA vaccine against infectious bursal disease virus by co-delivery with plasmid encoding chicken interleukin 2. Virology, 2004, 329, 89-100.	1.1	38
90	Plasmid DNA encoding antigens of infectious bursal disease viruses induce protective immune responses in chickens: factors influencing efficacy. Virus Research, 2003, 98, 63-74.	1.1	42

#	Article	IF	CITATIONS
91	Molecular Characteristics of Full-Length Genomic Segment A of Three Infectious Bursal Disease Viruses in China: Two Attenuated Strains and One Virulent Field Strain. Avian Diseases, 2001, 45, 862.	0.4	14
92	Amplification and Cloning by Long RT-PCR of Full-length Genome of Larger Segment of Chicken Infectious Bursal Disease Virus. Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao Acta Biochimica Et Biophysica Sinica, 2001, 33, 355-359.	0.1	0
93	Surface Display of Peptides Corresponding to the Heptad Repeat 2 Domain of the Feline Enteric Coronavirus Spike Protein on Bacillus subtilis Spores Elicits Protective Immune Responses Against Homologous Infection in a Feline Aminopeptidase-N-Transduced Mouse Model. Frontiers in Immunology, 0, 13, .	2.2	3