Fabien Scalzo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2277408/publications.pdf

Version: 2024-02-01

257450 254184 2,342 96 24 43 citations h-index g-index papers 102 102 102 3312 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Ischemia-Reperfusion Injury in Stroke. Interventional Neurology, 2012, 1, 185-199.	1.8	247
2	Morphological Clustering and Analysis of Continuous Intracranial Pressure. IEEE Transactions on Biomedical Engineering, 2009, 56, 696-705.	4.2	115
3	Postischemic Hyperperfusion on Arterial Spin Labeled Perfusion MRI is Linked to Hemorrhagic Transformation in Stroke. Journal of Cerebral Blood Flow and Metabolism, 2015, 35, 630-637.	4.3	98
4	Reducing backward masking through action game training. Journal of Vision, 2010, 10, 33-33.	0.3	93
5	miR-27a-3p protects against blood–brain barrier disruption and brain injury after intracerebral hemorrhage by targeting endothelial aquaporin-11. Journal of Biological Chemistry, 2018, 293, 20041-20050.	3.4	87
6	Deep learning and radiomics: the utility of Google TensorFlowâ, Inception in classifying clear cell renal cell carcinoma and oncocytoma on multiphasic CT. Abdominal Radiology, 2019, 44, 2009-2020.	2.1	73
7	A Machine Learning Approach for Classifying Ischemic Stroke Onset Time From Imaging. IEEE Transactions on Medical Imaging, 2019, 38, 1666-1676.	8.9	71
8	Deep Learning for Hemorrhagic Lesion Detection and Segmentation on Brain CT Images. IEEE Journal of Biomedical and Health Informatics, 2021, 25, 1646-1659.	6.3	70
9	Hemodynamics and stroke risk in intracranial atherosclerotic disease. Annals of Neurology, 2019, 85, 752-764.	5.3	65
10	Prediction of Hemorrhagic Transformation Severity in Acute Stroke From Source Perfusion MRI. IEEE Transactions on Biomedical Engineering, 2018, 65, 2058-2065.	4.2	63
11	Intracranial pressure pulse morphological features improved detection of decreased cerebral blood flow. Physiological Measurement, 2010, 31, 679-695.	2.1	60
12	Deep transfer learning-based prostate cancer classification using 3 Tesla multi-parametric MRI. Abdominal Radiology, 2019, 44, 2030-2039.	2.1	60
13	Noninvasive Fractional Flow on MRA Predicts Stroke Risk of Intracranial Stenosis. Journal of Neuroimaging, 2015, 25, 87-91.	2.0	57
14	Computational Fluid Dynamics Modeling of Symptomatic Intracranial Atherosclerosis May Predict Risk of Stroke Recurrence. PLoS ONE, 2014, 9, e97531.	2.5	54
15	Multi-delay ASL can identify leptomeningeal collateral perfusion in endovascular therapy of ischemic stroke. Oncotarget, 2017, 8, 2437-2443.	1.8	44
16	Intracranial hypertension prediction using extremely randomized decision trees. Medical Engineering and Physics, 2012, 34, 1058-1065.	1.7	43
17	Multi-center prediction of hemorrhagic transformation in acute ischemic stroke using permeability imaging features. Magnetic Resonance Imaging, 2013, 31, 961-969.	1.8	43
18	Regional Prediction of Tissue Fate in Acute Ischemic Stroke. Annals of Biomedical Engineering, 2012, 40, 2177-2187.	2.5	42

#	Article	IF	Citations
19	Regression analysis for peak designation in pulsatile pressure signals. Medical and Biological Engineering and Computing, 2009, 47, 967-977.	2.8	41
20	Fluid-Attenuated Inversion Recovery Vascular Hyperintensity Topography, Novel Imaging Marker for Revascularization in Middle Cerebral Artery Occlusion. Stroke, 2016, 47, 2763-2769.	2.0	40
21	Deep Learning Detection of Penumbral Tissue on Arterial Spin Labeling in Stroke. Stroke, 2020, 51, 489-497.	2.0	39
22	Deep learning of tissue fate features in acute ischemic stroke. , 2015, 2015, 1316-1321.		38
23	A Machine Learning Approach to Perfusion Imaging With Dynamic Susceptibility Contrast MR. Frontiers in Neurology, 2018, 9, 717.	2.4	33
24	Reducing False Intracranial Pressure Alarms Using Morphological Waveform Features. IEEE Transactions on Biomedical Engineering, 2013, 60, 235-239.	4.2	27
25	Perfusion Angiography in Acute Ischemic Stroke. Computational and Mathematical Methods in Medicine, 2016, 2016, 1-14.	1.3	27
26	A Cross-Sectional Study on Cerebral Hemodynamics After Mild Traumatic Brain Injury in a Pediatric Population. Frontiers in Neurology, 2018, 9, 200.	2.4	26
27	Association of anemia and hemoglobin decrease during acute stroke treatment with infarct growth and clinical outcome. PLoS ONE, 2018, 13, e0203535.	2.5	25
28	Robust Peak Recognition in Intracranial Pressure Signals. BioMedical Engineering OnLine, 2010, 9, 61.	2.7	24
29	ASPECTS-based reperfusion status on arterial spin labeling is associated with clinical outcome in acute ischemic stroke patients. Journal of Cerebral Blood Flow and Metabolism, 2018, 38, 382-392.	4.3	24
30	Noninvasive Intracranial Pressure Assessment Based on a Data-Mining Approach Using a Nonlinear Mapping Function. IEEE Transactions on Biomedical Engineering, 2012, 59, 619-626.	4.2	23
31	Semi-supervised detection of intracranial pressure alarms using waveform dynamics. Physiological Measurement, 2013, 34, 465-478.	2.1	23
32	Data Science of Stroke Imaging and Enlightenment of the Penumbra. Frontiers in Neurology, 2015, 6, 8.	2.4	23
33	Using artificial intelligence for improving stroke diagnosis in emergency departments: a practical framework. Therapeutic Advances in Neurological Disorders, 2020, 13, 175628642093896.	3.5	22
34	Bayesian tracking of intracranial pressure signal morphology. Artificial Intelligence in Medicine, 2012, 54, 115-123.	6.5	21
35	Predictive analytics and machine learning in stroke and neurovascular medicine. Neurological Research, 2019, 41, 681-690.	1.3	21
36	Detection of Intracranial Hypertension using Deep Learning. , 2016, 2016, 2491-2496.		20

#	Article	IF	Citations
37	Toward automated classification of pathological transcranial Doppler waveform morphology via spectral clustering. PLoS ONE, 2020, 15, e0228642.	2.5	20
38	Predicting ischemic stroke tissue fate using a deep convolutional neural network on source magnetic resonance perfusion images. Journal of Medical Imaging, 2019, 6, 1.	1.5	19
39	Performance of Deep Learning and Genitourinary Radiologists in Detection of Prostate Cancer Using 3†Multiparametric Magnetic Resonance Imaging. Journal of Magnetic Resonance Imaging, 2021, 54, 474-483.	3.4	18
40	Pediatric heart sound segmentation using Hidden Markov Model., 2014, 2014, 5490-3.		16
41	Nonsphericity Index and Size Ratio Identify Morphologic Differences between Growing and Stable Aneurysms in a Longitudinal Study of 93 Cases. American Journal of Neuroradiology, 2018, 39, 500-506.	2.4	16
42	A temporal deep learning approach for MR perfusion parameter estimation in stroke. , 2016, , .		15
43	Validation of collateral scoring on flat-detector multiphase CT angiography in patients with acute ischemic stroke. PLoS ONE, 2018, 13, e0202592.	2.5	15
44	Hemodynamic Impact of Systolic Blood Pressure and Hematocrit Calculated by Computational Fluid Dynamics in Patients with Intracranial Atherosclerosis. Journal of Neuroimaging, 2016, 26, 331-338.	2.0	14
45	Intracranial atherosclerotic disease mechanistic subtypes drive hypoperfusion patterns. Journal of Neuroimaging, 2021, 31, 686-690.	2.0	14
46	Intra-domain task-adaptive transfer learning to determine acute ischemic stroke onset time. Computerized Medical Imaging and Graphics, 2021, 90, 101926.	5.8	14
47	Feature Fusion Hierarchies for gender classification. , 2008, , .		13
48	DWI Lesion Patterns Predict Outcome in Stroke Patients with Thrombolysis. Cerebrovascular Diseases, 2015, 40, 279-285.	1.7	13
49	Computational fluid dynamics of computed tomography angiography to detect the hemodynamic impact of intracranial atherosclerotic stenosis. Neurovascular Imaging, 2015, 1 , .	2.4	12
50	Quantitative measures of EEG for prediction of outcome in cardiac arrest subjects treated with hypothermia: a literature review. Journal of Clinical Monitoring and Computing, 2018, 32, 977-992.	1.6	11
51	Prognostic value of subclinical thyroid dysfunction in ischemic stroke patients treated with intravenous thrombolysis. Aging, 2019, 11, 6839-6850.	3.1	11
52	Nonlinear Schrödinger Kernel for Hardware Acceleration of Machine Learning. Journal of Lightwave Technology, 2022, 40, 1308-1319.	4.6	11
53	Adaptive Patch Features for Object Class Recognition with Learned Hierarchical Models. , 2007, , .		10
54	Computational Hemodynamics in Intracranial Vessels Reconstructed from Biplane Angiograms. Lecture Notes in Computer Science, 2010, , 359-367.	1.3	10

#	Article	IF	Citations
55	The combination of baseline magnetic resonance perfusion-weighted imaging-derived tissue volume with severely prolonged arterial-tissue delay and diffusion-weighted imaging lesion volume is predictive of MCA-M1 recanalization in patients treated with endovascular thrombectomy. Neuroradiology, 2014, 56, 117-127.	2.2	10
56	Early Magnetic Resonance Imaging Predicts Early Neurological Deterioration in Acute Middle Cerebral Artery Minor Stroke. Journal of Stroke and Cerebrovascular Diseases, 2016, 25, 469-474.	1.6	10
57	Pattern Recognition in Medical Decision Support. BioMed Research International, 2019, 2019, 1-2.	1.9	10
58	Performance Comparison of Knowledge-Based Dose Prediction Techniques Based on Limited Patient Data. Technology in Cancer Research and Treatment, 2018, 17, 153303381881115.	1.9	9
59	Middle Cerebral Artery Plaque Hyperintensity on T2-Weighted Vessel Wall Imaging Is Associated with Ischemic Stroke. American Journal of Neuroradiology, 2019, 40, 1886-1892.	2.4	9
60	Abstract 156: SAMMPRIS Angiography Discloses Hemodynamic Effects of Intracranial Stenosis: Computational Fluid Dynamics of Fractional Flow. Stroke, 2013, 44, .	2.0	9
61	Perfusion Parameter Thresholds That Discriminate Ischemic Core Vary with Time from Onset in Acute Ischemic Stroke. American Journal of Neuroradiology, 2020, 41, 1809-1815.	2.4	8
62	Ensemble of sparse classifiers for high-dimensional biological data. International Journal of Data Mining and Bioinformatics, 2015, 12, 167.	0.1	7
63	Multimodal CT techniques for cerebrovascular and hemodynamic evaluation of ischemic stroke: occlusion, collaterals, and perfusion. Expert Review of Neurotherapeutics, 2016, 16, 515-525.	2.8	7
64	Opposing CSF hydrodynamic trends found in the cerebral aqueduct and prepontine cistern following shunt treatment in patients with normal pressure hydrocephalus. Fluids and Barriers of the CNS, 2019, 16, 2.	5.0	7
65	Reduced Leukoaraiosis, Noncardiac Embolic Stroke Etiology, and Shorter Thrombus Length Indicate Good Leptomeningeal Collateral Flow in Embolic Large-Vessel Occlusion. American Journal of Neuroradiology, 2022, 43, 63-69.	2.4	7
66	Quantification of infarct core signal using CT imaging in acute ischemic stroke. NeuroImage: Clinical, 2022, 34, 102998.	2.7	7
67	Nonlinear regression for sub-peak detection of intracranial pressure signals. , 2008, 2008, 5411-4.		6
68	Wavelet entropy characterization of elevated intracranial pressure., 2008, 2008, 2924-7.		6
69	Intracranial Pressure Signal Morphology: Real-Time Tracking. IEEE Pulse, 2012, 3, 49-52.	0.3	6
70	Noise reduction in intracranial pressure signal using causal shape manifolds. Biomedical Signal Processing and Control, 2016, 28, 19-26.	5.7	6
71	LSTM Network for Prediction of Hemorrhagic Transformation in Acute Stroke. Lecture Notes in Computer Science, 2019, , 177-185.	1.3	6
72	Detection of hyperperfusion on arterial spin labeling using deep learning., 2015, 2015, 1322-1327.		5

#	Article	IF	CITATIONS
73	Normative Ranges of Transcranial Doppler Metrics. Acta Neurochirurgica Supplementum, 2018, 126, 269-273.	1.0	5
74	Editorial: Machine Learning and Decision Support in Stroke. Frontiers in Neurology, 2020, 11, 486.	2.4	5
75	Similarity Metric Learning for 2D to 3D Registration of Brain Vasculature. Lecture Notes in Computer Science, 2016, 10072, 3-12.	1.3	5
76	Noninvasive intracranial hypertension diagnosis using ensemble sparse classifiers. , 2011, , .		4
77	Objective Assessment of Beat Quality in Transcranial Doppler Measurement of Blood Flow Velocity in Cerebral Arteries. IEEE Transactions on Biomedical Engineering, 2020, 67, 883-892.	4.2	4
78	Synthetic Perfusion Maps: Imaging Perfusion Deficits in DSC-MRI with Deep Learning. Lecture Notes in Computer Science, 2019, , 447-455.	1.3	4
79	Random Subwindows for Robust Peak Recognition in Intracranial Pressure Signals. Lecture Notes in Computer Science, 2008, , 370-380.	1.3	4
80	Tissue Fate Prediction in Acute Ischemic Stroke Using Cuboid Models. Lecture Notes in Computer Science, 2010, , 292-301.	1.3	4
81	A mobile battery-powered brain perfusion ultrasound (BPU) device designed for prehospital stroke diagnosis: correlation to perfusion MRI in healthy volunteers. Neurological Research and Practice, 2022, 4, 13.	2.0	4
82	Cerebral blood flow velocity pulse onset detection using adaptive thresholding., 2017,,.		3
83	Elastic net ensemble classifier for event-related potential based automatic spelling. Biomedical Signal Processing and Control, 2018, 46, 166-173.	5.7	3
84	Identification of Pulse Onset on Cerebral Blood Flow Velocity Waveforms: A Comparative Study. BioMed Research International, 2019, 2019, 1-12.	1.9	3
85	Algorithm for Reliable Detection of Pulse Onsets in Cerebral Blood Flow Velocity Signals. Frontiers in Neurology, 2019, 10, 1072.	2.4	3
86	Heterogeneity between proximal and distal aspects of occlusive thrombi on pretreatment imaging in acute ischemic stroke. Neuroradiology Journal, 2022, 35, 378-387.	1.2	3
87	Unsupervised Learning of Visual Feature Hierarchies. Lecture Notes in Computer Science, 2005, , 243-252.	1.3	2
88	Abstract 182: Time is Brain on the Collateral Clock! Collaterals and Reperfusion Determine Tissue Injury. Stroke, 2015, 46, .	2.0	2
89	Vessel Detection on Cerebral Angiograms Using Convolutional Neural Networks. Lecture Notes in Computer Science, 2016, , 659-668.	1.3	2
90	Automatic Estimation of Arterial Input Function in Digital Subtraction Angiography. Lecture Notes in Computer Science, 2019, , 393-402.	1.3	2

#	Article	IF	Citations
91	Real-Time Analysis of Intracranial Pressure Waveform Morphology. , 2012, , .		1
92	Angio-Al: Cerebral Perfusion Angiography with Machine Learning. Lecture Notes in Computer Science, 2019, , 357-367.	1.3	1
93	Tissue Fate Prediction from Regional Imaging Features in Acute Ischemic Stroke. , 0, , .		O
94	Tensor Voting Extraction of Vessel Centerlines from Cerebral Angiograms. Lecture Notes in Computer Science, 2016, , 35-44.	1.3	0
95	Extraction of Vascular Intensity Directional Derivative on Computed Tomography Angiography. Lecture Notes in Computer Science, 2016, , 497-506.	1.3	0
96	Computational fluid dynamics methods applied to intracranial stenosis imaging. Ultrasound in Medicine and Biology, 2019, 45, S102.	1.5	0