Jie Zheng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2277284/publications.pdf Version: 2024-02-01

		331259	315357
41	1,514	21	38
papers	citations	h-index	g-index
42	42	42	1566
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Surface modification improves fabrication of pickering high internal phase emulsions stabilized by cellulose nanocrystals. Food Hydrocolloids, 2018, 75, 125-130.	5.6	223
2	Pickering high internal phase emulsions stabilized by protein-covered cellulose nanocrystals. Food Hydrocolloids, 2018, 82, 96-105.	5.6	127
3	Positive and negative effects of polyphenol incorporation in baked foods. Food Chemistry, 2019, 284, 90-99.	4.2	95
4	Compositional Differences of Phenolic Compounds between Black Currant (<i>Ribes nigrum</i> L.) Cultivars and Their Response to Latitude and Weather Conditions. Journal of Agricultural and Food Chemistry, 2012, 60, 6581-6593.	2.4	82
5	Effects of Latitude and Weather Conditions on Contents of Sugars, Fruit Acids, and Ascorbic Acid in Black Currant (Ribes nigrum L.) Juice. Journal of Agricultural and Food Chemistry, 2009, 57, 2977-2987.	2.4	79
6	Enzymatic acylation of blackcurrant (Ribes nigrum) anthocyanins and evaluation of lipophilic properties and antioxidant capacity of derivatives. Food Chemistry, 2019, 281, 189-196.	4.2	78
7	Enzymatic Acylation of Anthocyanins Isolated from Alpine Bearberry (<i>Arctostaphylos alpina</i>) and Lipophilic Properties, Thermostability, and Antioxidant Capacity of the Derivatives. Journal of Agricultural and Food Chemistry, 2018, 66, 2909-2916.	2.4	68
8	Flavonol glycosides in berries of two major subspecies of sea buckthorn (Hippophaë rhamnoides L.) and influence of growth sites. Food Chemistry, 2016, 200, 189-198.	4.2	62
9	Effects of Genotype, Latitude, and Weather Conditions on the Composition of Sugars, Sugar Alcohols, Fruit Acids, and Ascorbic Acid in Sea Buckthorn (Hippophaë rhamnoides ssp. mongolica) Berry Juice. Journal of Agricultural and Food Chemistry, 2012, 60, 3180-3189.	2.4	48
10	Adducts formed during protein digestion decreased the toxicity of five carbonyl compounds against Caco-2 cells. Journal of Hazardous Materials, 2019, 363, 26-33.	6.5	47
11	Benefits, deleterious effects and mitigation of methylglyoxal in foods: A critical review. Trends in Food Science and Technology, 2021, 107, 201-212.	7.8	44
12	Effects of latitude and weather conditions on sugars, fruit acids and ascorbic acid in currant (<i>Ribes</i> sp.) cultivars. Journal of the Science of Food and Agriculture, 2009, 89, 2011-2023.	1.7	42
13	The influence of ionic strength on the characteristics of heat-induced soy protein aggregate nanoparticles and the freeze–thaw stability of the resultant Pickering emulsions. Food and Function, 2017, 8, 2974-2981.	2.1	41
14	Effect of maize bran feruloylated oligosaccharides on the formation of endogenous contaminants and the appearance and textural properties of biscuits. Food Chemistry, 2018, 245, 974-980.	4.2	35
15	Water-in-Oil Pickering Emulsions Stabilized Solely by Water-Dispersible Phytosterol Particles. Langmuir, 2020, 36, 14991-14998.	1.6	33
16	Feruloylated oligosaccharides from maize bran alleviate the symptoms of diabetes in streptozotocin-induced type 2 diabetic rats. Food and Function, 2018, 9, 1779-1789.	2.1	32
17	Interaction of Acrylamide, Acrolein, and 5-Hydroxymethylfurfural with Amino Acids and DNA. Journal of Agricultural and Food Chemistry, 2020, 68, 5039-5048.	2.4	32
18	Influence of origin, harvesting time and weather conditions on content of inositols and methylinositols in sea buckthorn (Hippophaë rhamnoides) berries. Food Chemistry, 2011, 125, 388-396.	4.2	30

Jie Zheng

#	Article	IF	CITATIONS
19	Influences of stir-frying and baking on flavonoid profile, antioxidant property, and hydroxymethylfurfural formation during preparation of blueberry-filled pastries. Food Chemistry, 2019, 287, 167-175.	4.2	30
20	Regulation of phytochemicals in fruits and berries by environmental variation—Sugars and organic acids. Journal of Food Biochemistry, 2019, 43, e12642.	1.2	30
21	Formation of a Hydroxymethylfurfural–Cysteine Adduct and Its Absorption and Cytotoxicity in Caco-2 Cells. Journal of Agricultural and Food Chemistry, 2017, 65, 9902-9908.	2.4	23
22	Phytochemical Profiling and Fingerprint Analysis of Chinese Jujube (Ziziphus jujuba Mill.) Leaves of 66 Cultivars from Xinjiang Province. Molecules, 2019, 24, 4528.	1.7	22
23	Origin and Fate of Acrolein in Foods. Foods, 2022, 11, 1976.	1.9	22
24	Formation of di-cysteine acrolein adduct decreases cytotoxicity of acrolein by ROS alleviation and apoptosis intervention. Journal of Hazardous Materials, 2020, 387, 121686.	6.5	20
25	Sea Buckthorn (<i>Hippophaë rhamnoides</i> ssp. <i>rhamnoides</i>) Berries in Nordic Environment: Compositional Response to Latitude and Weather Conditions. Journal of Agricultural and Food Chemistry, 2016, 64, 5031-5044.	2.4	19
26	Absorption of 1-Dicysteinethioacetal–5-Hydroxymethylfurfural in Rats and Its Effect on Oxidative Stress and Gut Microbiota. Journal of Agricultural and Food Chemistry, 2018, 66, 11451-11458.	2.4	17
27	Identification of a 5-Hydroxymethylfurfural–Lysine Schiff Base and Its Cytotoxicity in Three Cell Lines. Journal of Agricultural and Food Chemistry, 2019, 67, 10214-10221.	2.4	15
28	Pulverizing processes affect the chemical quality and thermal property of black, white, and green pepper (Piper nigrum L.). Journal of Food Science and Technology, 2018, 55, 2130-2142.	1.4	14
29	Cytotoxicity of adducts formed between quercetin and methylglyoxal in PC-12 cells. Food Chemistry, 2021, 352, 129424.	4.2	12
30	Antimicrobial activity of cyanidin-3-O-glucoside–lauric acid ester against Staphylococcus aureus and Escherichia coli. Food Chemistry, 2022, 383, 132410.	4.2	12
31	Formation and Identification of Two Hydroxmethylfurfural–Glycine Adducts and Their Cytotoxicity and Absorption in Caco-2 Cells. Journal of Agricultural and Food Chemistry, 2020, 68, 384-389.	2.4	10
32	Morin decreases acrolein-induced cell injury in normal human hepatocyte cell line LO2. Journal of Functional Foods, 2020, 75, 104234.	1.6	10
33	Glycine and serine markedly eliminate methylglyoxal in the presence of formaldehyde via the formation of imidazole salts. Food Chemistry, 2022, 369, 130952.	4.2	10
34	Design of a naphthalimide-based probe for acrolein detection in foods and cells. Journal of Hazardous Materials, 2022, 426, 128118.	6.5	10
35	Identification of adducts formed between acrolein and alanine or serine in fried potato crisps and the cytotoxicity-lowering effect of acrolein in three cell lines. Food Chemistry, 2021, 361, 130164.	4.2	9
36	Identification and cytotoxic evaluation of the novel rutin–methylglyoxal adducts with dione structures in vivo and in foods. Food Chemistry, 2022, 377, 132008.	4.2	9

Jie Zheng

#	Article	IF	CITATIONS
37	Water-In-Oil Pickering Emulsions Stabilized by Microcrystalline Phytosterols in Oil: Fabrication Mechanism and Application as a Salt Release System. Journal of Agricultural and Food Chemistry, 2022, 70, 5408-5416.	2.4	7
38	The Formation of Acrylamide from and Its Reduction by 3â€Aminopropanamide Occur Simultaneously During Thermal Treatment. Journal of Food Science, 2018, 83, 2662-2668.	1.5	5
39	Formation and Identification of Six Amino Acid - Acrylamide Adducts and Their Cytotoxicity Toward Gastrointestinal Cell Lines. Frontiers in Nutrition, 2022, 9, .	1.6	3
40	PREPARATION OF LEAFY VEGETABLE PAPER. Journal of Food Processing and Preservation, 0, 34, 519-529.	0.9	2
41	Widely Targeted UHPLC-MS/MS Metabolomic Analysis on the Chemical Variation in Blueberry-Filled Pastries During Processing. Frontiers in Nutrition, 2020, 7, 569172.	1.6	2