Kateryna Loza

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2277078/publications.pdf

Version: 2024-02-01

236612 233125 2,172 64 25 45 citations h-index g-index papers 68 68 68 3715 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	The dissolution and biological effects of silver nanoparticles in biological media. Journal of Materials Chemistry B, 2014, 2, 1634.	2.9	305
2	Synthesis, Structure, Properties, and Applications of Bimetallic Nanoparticles of Noble Metals. Advanced Functional Materials, 2020, 30, 1909260.	7.8	274
3	PVP-coated, negatively charged silver nanoparticles: A multi-center study of their physicochemical characteristics, cell culture and in vivo experiments. Beilstein Journal of Nanotechnology, 2014, 5, 1944-1965.	1.5	119
4	Structural Evolution of Silver Nanoparticles during Wet-Chemical Synthesis. Chemistry of Materials, 2014, 26, 951-957.	3.2	91
5	3D biodegradable scaffolds of polycaprolactone with silicate-containing hydroxyapatite microparticles for bone tissue engineering: high-resolution tomography and in vitro study. Scientific Reports, 2018, 8, 8907.	1.6	88
6	Incorporation of silver nanoparticles into magnetron-sputtered calcium phosphate layers on titanium as an antibacterial coating. Colloids and Surfaces B: Biointerfaces, 2017, 156, 104-113.	2.5	61
7	Nanostructure of wet-chemically prepared, polymer-stabilized silver–gold nanoalloys (6 nm) over the entire composition range. Journal of Materials Chemistry B, 2015, 3, 4654-4662.	2.9	56
8	Interaction of dermatologically relevant nanoparticles with skin cells and skin. Beilstein Journal of Nanotechnology, 2014, 5, 2363-2373.	1.5	55
9	Mimicking exposures to acute and lifetime concentrations of inhaled silver nanoparticles by two different in vitro approaches. Beilstein Journal of Nanotechnology, 2014, 5, 1357-1370.	1.5	55
10	Hybrid biocomposites based on titania nanotubes and a hydroxyapatite coating deposited by RF-magnetron sputtering: Surface topography, structure, and mechanical properties. Applied Surface Science, 2017, 426, 229-237.	3.1	51
11	Ultrasmall gold nanoparticles (2Ânm) can penetrate and enter cell nuclei in an in vitro 3D brain spheroid model. Acta Biomaterialia, 2020, 111, 349-362.	4.1	51
12	RF magnetron sputtering of a hydroxyapatite target: A comparison study on polytetrafluorethylene and titanium substrates. Applied Surface Science, 2017, 414, 335-344.	3.1	49
13	Functionalization of titania nanotubes with electrophoretically deposited silver and calcium phosphate nanoparticles: Structure, composition and antibacterial assay. Materials Science and Engineering C, 2019, 97, 420-430.	3.8	48
14	Decreased bacterial colonization of additively manufactured Ti6Al4V metallic scaffolds with immobilized silver and calcium phosphate nanoparticles. Applied Surface Science, 2019, 480, 822-829.	3.1	47
15	Study of biocompatibility effect of nanocarbon particles on various cell types <i>in vitro</i> . Materialwissenschaft Und Werkstofftechnik, 2016, 47, 216-221.	0.5	42
16	The predominant species of ionic silver in biological media is colloidally dispersed nanoparticulate silver chloride. RSC Advances, 2014, 4, 35290.	1.7	41
17	Click Chemistry on the Surface of Ultrasmall Gold Nanoparticles (2 nm) for Covalent Ligand Attachment Followed by NMR Spectroscopy. Langmuir, 2019, 35, 7191-7204.	1.6	38
18	Adhesion, proliferation, and osteogenic differentiation of human mesenchymal stem cells on additively manufactured Ti6Al4V alloy scaffolds modified with calcium phosphate nanoparticles. Colloids and Surfaces B: Biointerfaces, 2019, 176, 130-139.	2.5	37

#	Article	IF	Citations
19	Conjugation of thiol-terminated molecules to ultrasmall 2 nm-gold nanoparticles leads to remarkably complex ¹ H-NMR spectra. Journal of Materials Chemistry B, 2016, 4, 2179-2189.	2.9	35
20	Hybrid biocomposite with a tunable antibacterial activity and bioactivity based on RF magnetron sputter deposited coating and silver nanoparticles. Applied Surface Science, 2015, 329, 212-218.	3.1	34
21	Bimetallic silver–platinum nanoparticles with combined osteo-promotive and antimicrobial activity. Nanotechnology, 2019, 30, 305101.	1.3	34
22	Effect of Porosity of Alumina and Zirconia Ceramics toward Pre-Osteoblast Response. Frontiers in Bioengineering and Biotechnology, 2015, 3, 175.	2.0	32
23	Deciphering the Surface Composition and the Internal Structure of Alloyed Silver–Gold Nanoparticles. Chemistry - A European Journal, 2018, 24, 9051-9060.	1.7	32
24	Solution NMR Spectroscopy with Isotope-Labeled Cysteine (¹³ C and ¹⁵ N) Reveals the Surface Structure of <scp>I</scp> -Cysteine-Coated Ultrasmall Gold Nanoparticles (1.8) Tj ETQq0 0	0 rg B √r /Ov	erloodsk 10 Tf 5
25	Glancing Angle Deposition of Zn-Doped Calcium Phosphate Coatings by RF Magnetron Sputtering. Coatings, 2019, 9, 220.	1.2	25
26	On the Crystallography of Silver Nanoparticles with Different Shapes. Crystal Growth and Design, 2016, 16, 3677-3687.	1.4	23
27	Subtoxic cell responses to silica particles with different size and shape. Scientific Reports, 2020, 10, 21591.	1.6	23
28	Dental lessons from past to present: ultrastructure and composition of teeth from plesiosaurs, dinosaurs, extinct and recent sharks. RSC Advances, 2015, 5, 61612-61622.	1.7	22
29	Silver nanoparticles in complex media: an easy procedure to discriminate between metallic silver nanoparticles, reprecipitated silver chloride, and dissolved silver species. RSC Advances, 2018, 8, 24386-24391.	1.7	21
30	In Vivo Effects of a Hydroxyapatite-Based Oral Care Gel on the Calcium and Phosphorus Levels of Dental Plaque. European Journal of Dentistry, 2020, 14, 206-211.	0.8	19
31	Proinflammatory and cytotoxic response to nanoparticles in precision-cut lung slices. Beilstein Journal of Nanotechnology, 2014, 5, 2440-2449.	1.5	18
32	Comparison of different methods to study effects of silver nanoparticles on the pro- and antioxidant status of human keratinocytes and fibroblasts. Methods, 2016, 109, 55-63.	1.9	17
33	Barium sulfate micro- and nanoparticles as bioinert reference material in particle toxicology. Nanotoxicology, 2016, 10, 1492-1502.	1.6	17
34	Thermally induced crystallization and phase evolution in powders derived from amorphous calcium phosphate precipitates with a Ca/P ratio of 1:1. Journal of Crystal Growth, 2016, 450, 190-196.	0.7	17
35	Comparative biological effects of spherical noble metal nanoparticles (Rh, Pd, Ag, Pt, Au) with 4–8 nm diameter. Beilstein Journal of Nanotechnology, 2018, 9, 2763-2774.	1.5	17
36	Controlling the Surface Functionalization of Ultrasmall Gold Nanoparticles by Sequenceâ€Defined Macromolecules. Chemistry - A European Journal, 2021, 27, 1451-1464.	1.7	17

#	Article	IF	Citations
37	Peptide-Conjugated Ultrasmall Gold Nanoparticles (2 nm) for Selective Protein Targeting. ACS Applied Bio Materials, 2021, 4, 945-965.	2.3	17
38	Particle-induced cell migration assay (PICMA): A new in vitro assay for inflammatory particle effects based on permanent cell lines. Toxicology in Vitro, 2015, 29, 997-1005.	1.1	16
39	Synthesis and biological characterization of alloyed silver–platinum nanoparticles: from compact core–shell nanoparticles to hollow nanoalloys. RSC Advances, 2018, 8, 38582-38590.	1.7	15
40	Comparative Study of the Structure, Properties, and Corrosion Behavior of Sr-Containing Biocoatings on Mg0.8Ca. Materials, 2020, 13, 1942.	1.3	14
41	Wetâ€Chemical Synthesis of Pdâ€Au Coreâ€Shell Nanoparticles (8â€nm): From Nanostructure to Biological Properties. ChemistrySelect, 2018, 3, 4994-5001.	0.7	13
42	An Efficient Method for Covalent Surface Functionalization of Ultrasmall Metallic Nanoparticles by Surface Azidation Followed by Copper atalyzed Azideâ€Alkyne Cycloaddition (Click Chemistry). ChemNanoMat, 2021, 7, 1330-1339.	1.5	13
43	Development of a bone substitute material based on additive manufactured Ti6Al4V alloys modified with bioceramic calcium carbonate coating: Characterization and antimicrobial properties. Ceramics International, 2020, 46, 25661-25670.	2.3	12
44	New Tools to Probe the Protein Surface: Ultrasmall Gold Nanoparticles Carry Amino Acid Binders. Journal of Physical Chemistry B, 2021, 125, 115-127.	1.2	12
45	Determination of the Ca/P ratio in calcium phosphates during the precipitation of hydroxyapatite using X-ray diffractometry. Processing and Application of Ceramics, 2013, 7, 93-95.	0.4	12
46	Peculiarities in thermal evolution of precipitated amorphous calcium phosphates with an initial Ca/P ratio of 1:1. Journal of Materials Science: Materials in Medicine, 2017, 28, 52.	1.7	10
47	Nanoparticulate versus ionic silver: Behavior in the tank water, bioaccumulation, elimination and subcellular distribution in the freshwater mussel Dreissena polymorpha. Environmental Pollution, 2017, 222, 251-260.	3.7	10
48	Targeting the Surface of the Protein 14â€3â€3 by Ultrasmall (1.5â€nm) Gold Nanoparticles Carrying the Specific Peptide CRaf. ChemBioChem, 2021, 22, 1456-1463.	1.3	10
49	Metal–Ligand Interface and Internal Structure of Ultrasmall Silver Nanoparticles (2 nm). Journal of Physical Chemistry B, 2021, 125, 5645-5659.	1.2	10
50	Stability of Nanoparticle Dispersions and Particle Agglomeration. Nanoscience and Technology, 2019, , 85-100.	1.5	8
51	Enhanced dissolution of silver nanoparticles in a physical mixture with platinum nanoparticles based on the sacrificial anode effect. Nanotechnology, 2020, 31, 055703.	1.3	8
52	Study of structure of calcium phosphate materials by means of electron spin resonance. Applied Radiation and Isotopes, 2012, 70, 2621-2626.	0.7	7
53	Water-Based Synthesis of Ultrasmall Nanoparticles of Platinum Group Metal Oxides (1.8 nm). Inorganic Chemistry, 2022, 61, 5133-5147.	1.9	6
54	Luminescent Amphiphilic Aminoglycoside Probes to Study Transfection. ChemBioChem, 2021, 22, 1563-1567.	1.3	5

#	Article	IF	CITATIONS
55	Pathways for Oral and Rectal Delivery of Gold Nanoparticles (1.7 nm) and Gold Nanoclusters into the Colon: Enteric-Coated Capsules and Suppositories. Molecules, 2021, 26, 5069.	1.7	5
56	Nanoscopic Porous Iridium/Iridium Dioxide Superstructures (15â€nm): Synthesis and Thermal Conversion by Inâ€Situ Transmission Electron Microscopy. Chemistry - A European Journal, 2019, 25, 11048-11057.	1.7	4
57	Temperature-Induced Stress Relaxation in Alloyed Silver–Gold Nanoparticles (7–8 nm) by in Situ X-ray Powder Diffraction. Crystal Growth and Design, 2020, 20, 107-115.	1.4	4
58	Synthesis and intracellular tracing surface-functionalized calcium phosphate nanoparticles by super-resolution microscopy (STORM). Materialia, 2020, 12, 100773.	1.3	4
59	Immobilization of cesium from aqueous solution using nanoparticles of synthetic calcium phosphates. Chemistry Central Journal, 2018, 12, 87.	2.6	3
60	Synthesis of Metallic and Metal Oxide Particles. Nanoscience and Technology, 2019, , 3-27.	1.5	3
61	Influence of Nanoparticle Processing on the Thermoelectric Properties of (Bi x Sb 1â^'X) 2 Te 3 Ternary Alloys. ChemistryOpen, 2021, 10, 189-198.	0.9	2
62	The effect of short silica fibers (0.3Âμm 3.2Âμm) on macrophages. Science of the Total Environment, 2021, 769, 144575.	3.9	2
63	Optimized biological tools: ultrastructure of rodent and bat teeth compared to human teeth. Bioinspired, Biomimetic and Nanobiomaterials, 2019, 8, 247-253.	0.7	1
64	Frontispiece: Nanoscopic Porous Iridium/Iridium Dioxide Superstructures (15â€nm): Synthesis and Thermal Conversion by Inâ€Situ Transmission Electron Microscopy. Chemistry - A European Journal, 2019, 25, .	1.7	0