Genxing Pan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2277048/publications.pdf Version: 2024-02-01

		26630	19749
151	14,713	56	117
papers	citations	h-index	g-index
153	153	153	12785
all doce	doce citations	times ranked	citing outhors
andocs	does citations	times ranked	citing autions

#	Article	IF	CITATIONS
1	Greenhouse gas mitigation in agriculture. Philosophical Transactions of the Royal Society B: Biological Sciences, 2008, 363, 789-813.	4.0	1,739
2	Soil carbon 4 per mille. Geoderma, 2017, 292, 59-86.	5.1	1,279
3	Global change pressures on soils from land use and management. Global Change Biology, 2016, 22, 1008-1028.	9.5	605
4	Biochar's effect on crop productivity and the dependence on experimental conditions—a meta-analysis of literature data. Plant and Soil, 2013, 373, 583-594.	3.7	580
5	Effects of biochar amendment on soil quality, crop yield and greenhouse gas emission in a Chinese rice paddy: A field study of 2 consecutive rice growing cycles. Field Crops Research, 2012, 127, 153-160.	5.1	494
6	A three-year experiment confirms continuous immobilization of cadmium and lead in contaminated paddy field with biochar amendment. Journal of Hazardous Materials, 2014, 272, 121-128.	12.4	482
7	Storage and sequestration potential of topsoil organic carbon in China's paddy soils. Global Change Biology, 2004, 10, 79-92.	9.5	431
8	Effect of biochar amendment on maize yield and greenhouse gas emissions from a soil organic carbon poor calcareous loamy soil from Central China Plain. Plant and Soil, 2012, 351, 263-275.	3.7	397
9	Quantification of biochar effects on soil hydrological properties using meta-analysis of literature data. Geoderma, 2016, 274, 28-34.	5.1	363
10	The role of soil organic matter in maintaining the productivity and yield stability of cereals in China. Agriculture, Ecosystems and Environment, 2009, 129, 344-348.	5.3	339
11	Biochar soil amendment increased bacterial but decreased fungal gene abundance with shifts in community structure in a slightly acid rice paddy from Southwest China. Applied Soil Ecology, 2013, 71, 33-44.	4.3	324
12	Biochar decreased microbial metabolic quotient and shifted community composition four years after a single incorporation in a slightly acid rice paddy from southwest China. Science of the Total Environment, 2016, 571, 206-217.	8.0	236
13	Effects of amendment of biochar-manure compost in conjunction with pyroligneous solution on soil quality and wheat yield of a salt-stressed cropland from Central China Great Plain. Field Crops Research, 2013, 144, 113-118.	5.1	209
14	Biochar soil amendment as a solution to prevent Cd-tainted rice from China: Results from a cross-site field experiment. Ecological Engineering, 2013, 58, 378-383.	3.6	205
15	Responses of wheat and rice to factorial combinations of ambient and elevated CO ₂ and temperature in FACE experiments. Global Change Biology, 2016, 22, 856-874.	9.5	200
16	Combined inorganic/organic fertilization enhances N efficiency and increases rice productivity through organic carbon accumulation in a rice paddy from the Tai Lake region, China. Agriculture, Ecosystems and Environment, 2009, 131, 274-280.	5.3	199
17	Carbon footprint of China's crop production—An estimation using agro-statistics data over 1993–2007. Agriculture, Ecosystems and Environment, 2011, 142, 231-237.	5.3	192
18	Carbon footprint of grain crop production in China – based on farm survey data. Journal of Cleaner Production, 2015, 104, 130-138.	9.3	189

#	Article	IF	CITATIONS
19	Topsoil organic carbon storage of China and its loss by cultivation. Biogeochemistry, 2005, 74, 47-62.	3.5	172
20	Effects of biochar on availability and plant uptake of heavy metals – A meta-analysis. Journal of Environmental Management, 2018, 222, 76-85.	7.8	172
21	Low uptake affinity cultivars with biochar to tackle Cd-tainted rice — A field study over four rice seasons in Hunan, China. Science of the Total Environment, 2016, 541, 1489-1498.	8.0	165
22	Management opportunities to mitigate greenhouse gas emissions from Chinese agriculture. Agriculture, Ecosystems and Environment, 2015, 209, 108-124.	5.3	158
23	Biochar helps enhance maize productivity and reduce greenhouse gas emissions under balanced fertilization in a rainfed low fertility inceptisol. Chemosphere, 2016, 142, 106-113.	8.2	149
24	Biochars and the plant-soil interface. Plant and Soil, 2015, 395, 1-5.	3.7	145
25	Continuous immobilization of cadmium and lead in biochar amended contaminated paddy soil: A five-year field experiment. Ecological Engineering, 2016, 93, 1-8.	3.6	145
26	Changes in microbial biomass and the metabolic quotient with biochar addition to agricultural soils: A Meta-analysis. Agriculture, Ecosystems and Environment, 2017, 239, 80-89.	5.3	143
27	Biochar bound urea boosts plant growth and reduces nitrogen leaching. Science of the Total Environment, 2020, 701, 134424.	8.0	137
28	Effects of biochar addition on N2O and CO2 emissions from two paddy soils. Biology and Fertility of Soils, 2011, 47, 887-896.	4.3	136
29	Consistent increase in abundance and diversity but variable change in community composition of bacteria in topsoil of rice paddy under short term biochar treatment across three sites from South China. Applied Soil Ecology, 2015, 91, 68-79.	4.3	133
30	The Electrochemical Properties of Biochars and How They Affect Soil Redox Properties and Processes. Agronomy, 2015, 5, 322-340.	3.0	122
31	Competing uses for China's straw: the economic and carbon abatement potential of biochar. GCB Bioenergy, 2015, 7, 1272-1282.	5.6	115
32	Biochar compound fertilizer increases nitrogen productivity and economic benefits but decreases carbon emission of maize production. Agriculture, Ecosystems and Environment, 2017, 241, 70-78.	5.3	110
33	Effect of long-term fertilization on C mineralization and production of CH4 and CO2 under anaerobic incubation from bulk samples and particle size fractions of a typical paddy soil. Agriculture, Ecosystems and Environment, 2007, 120, 129-138.	5.3	107
34	Changes in soil microbial community structure and enzyme activity with amendment of biochar-manure compost and pyroligneous solution in a saline soil from Central China. European Journal of Soil Biology, 2015, 70, 67-76.	3.2	102
35	Mitigating greenhouse gas emissions in agriculture: From farm production to food consumption. Journal of Cleaner Production, 2017, 149, 1011-1019.	9.3	102
36	Cd immobilization in a contaminated rice paddy by inorganic stabilizers of calcium hydroxide and silicon slag and by organic stabilizer of biochar. Environmental Science and Pollution Research, 2016, 23, 10028-10036.	5.3	99

#	Article	IF	CITATIONS
37	Rethinking sources of nitrogen to cereal crops. Global Change Biology, 2020, 26, 191-199.	9.5	99
38	Biochar compound fertilizer as an option to reach high productivity but low carbon intensity in rice agriculture of China. Carbon Management, 2014, 5, 145-154.	2.4	96
39	Is current biochar research addressing global soil constraints for sustainable agriculture?. Agriculture, Ecosystems and Environment, 2016, 226, 25-32.	5.3	96
40	Effects of biochar application on fluxes of three biogenic greenhouse gases: a metaâ€analysis. Ecosystem Health and Sustainability, 2016, 2, .	3.1	91
41	Increase in soil organic carbon stock over the last two decades in China's Jiangsu Province. Global Change Biology, 2009, 15, 861-875.	9.5	86
42	Biochar improves soil quality and N2-fixation and reduces net ecosystem CO2 exchange in a dryland legume-cereal cropping system. Soil and Tillage Research, 2019, 186, 172-182.	5.6	85
43	Organic carbon quality, composition of main microbial groups, enzyme activities, and temperature sensitivity of soil respiration of an acid paddy soil treated with biochar. Biology and Fertility of Soils, 2019, 55, 185-197.	4.3	82
44	Changes in microbial community structure and function within particle size fractions of a paddy soil under different long-term fertilization treatments from the Tai Lake region, China. Colloids and Surfaces B: Biointerfaces, 2007, 58, 264-270.	5.0	79
45	Biochar amendment changes temperature sensitivity of soil respiration and composition of microbial communities 3Âyears after incorporation in an organic carbon-poor dry cropland soil. Biology and Fertility of Soils, 2018, 54, 175-188.	4.3	79
46	Simulating greenhouse gas mitigation potentials for Chinese Croplands using the <scp>DAYCENT</scp> ecosystem model. Global Change Biology, 2014, 20, 948-962.	9.5	77
47	Sustainable biochar effects for low carbon crop production: A 5-crop season field experiment on a low fertility soil from Central China. Agricultural Systems, 2014, 129, 22-29.	6.1	77
48	Utilization of biochar produced from invasive plant species to efficiently adsorb Cd (II) and Pb (II). Bioresource Technology, 2020, 317, 124011.	9.6	76
49	Effect of biochar amendment on soilâ€silicon availability and rice uptake. Journal of Plant Nutrition and Soil Science, 2014, 177, 91-96.	1.9	75
50	Environmental and economic assessment of crop residue competitive utilization for biochar, briquette fuel and combined heat and power generation. Journal of Cleaner Production, 2018, 192, 916-923.	9.3	75
51	Biochar has no effect on soil respiration across Chinese agricultural soils. Science of the Total Environment, 2016, 554-555, 259-265.	8.0	67
52	The responses of soil organic carbon mineralization and microbial communities to fresh and aged biochar soil amendments. GCB Bioenergy, 2019, 11, 1408-1420.	5.6	67
53	Biochar DOM for plant promotion but not residual biochar for metal immobilization depended on pyrolysis temperature. Science of the Total Environment, 2019, 662, 571-580.	8.0	67
54	Soil quality changes in land degradation as indicated by soil chemical, biochemical and microbiological properties in a karst area of southwest Guizhou, China. Environmental Geology, 2006, 51, 609-619.	1.2	64

#	Article	IF	CITATIONS
55	A long-term hybrid poplar plantation on cropland reduces soil organic carbon mineralization and shifts microbial community abundance and composition. Applied Soil Ecology, 2017, 111, 94-104.	4.3	62
56	How can soil monitoring networks be used to improve predictions of organic carbon pool dynamics and CO2 fluxes in agricultural soils?. Plant and Soil, 2011, 338, 247-259.	3.7	61
57	Changes in grain protein and amino acids composition of wheat and rice under shortâ€ŧerm increased [CO ₂] and temperature of canopy air in a paddy from East China. New Phytologist, 2019, 222, 726-734.	7.3	61
58	Farmers' Perceptions of Climate Variability and Factors Influencing Adaptation: Evidence from Anhui and Jiangsu, China. Environmental Management, 2016, 57, 976-986.	2.7	57
59	Pyrolysis of crop residues in a mobile bench-scale pyrolyser: Product characterization and environmental performance. Journal of Analytical and Applied Pyrolysis, 2016, 119, 52-59.	5.5	56
60	Size and variability of crop productivity both impacted by CO2 enrichment and warming—A case study of 4 year field experiment in a Chinese paddy. Agriculture, Ecosystems and Environment, 2016, 221, 40-49.	5.3	56
61	The molecular properties of biochar carbon released in dilute acidic solution and its effects on maize seed germination. Science of the Total Environment, 2017, 576, 858-867.	8.0	53
62	Biochar provided limited benefits for rice yield and greenhouse gas mitigation six years following an amendment in a fertile rice paddy. Catena, 2019, 179, 20-28.	5.0	52
63	Farm and product carbon footprints of China's fruit production—life cycle inventory of representative orchards of five major fruits. Environmental Science and Pollution Research, 2016, 23, 4681-4691.	5.3	51
64	Temporal and spatial variations in the discharge and dissolved organic carbon of drip waters in Beijing Shihua Cave, China. Hydrological Processes, 2008, 22, 3749-3758.	2.6	49
65	Short-term response of nitrifier communities and potential nitrification activity to elevated CO2 and temperature interaction in a Chinese paddy field. Applied Soil Ecology, 2015, 96, 88-98.	4.3	49
66	Biochar effects on uptake of cadmium and lead by wheat in relation to annual precipitation: a 3-year field study. Environmental Science and Pollution Research, 2018, 25, 3368-3377.	5.3	48
67	Deriving Emission Factors and Estimating Direct Nitrous Oxide Emissions for Crop Cultivation in China. Environmental Science & Technology, 2019, 53, 10246-10257.	10.0	47
68	Benefits of soil carbon: report on the outcomes of an international scientific committee on problems of the environment rapid assessment workshop. Carbon Management, 2014, 5, 185-192.	2.4	46
69	Molecular changes of soil organic matter induced by root exudates in a rice paddy under CO2 enrichment and warming of canopy air. Soil Biology and Biochemistry, 2019, 137, 107544.	8.8	43
70	Effect of amendment of biochar supplemented with Si on Cd mobility and rice uptake over three rice growing seasons in an acidic Cd-tainted paddy from central South China. Science of the Total Environment, 2020, 709, 136101.	8.0	43
71	Carbon footprint of China's livestock system – a case study of farm survey in Sichuan province, China. Journal of Cleaner Production, 2015, 102, 136-143.	9.3	41
72	Enhanced rice production but greatly reduced carbon emission following biochar amendment in a metal-polluted rice paddy. Environmental Science and Pollution Research, 2015, 22, 18977-18986.	5.3	41

#	Article	IF	CITATIONS
73	Legacy of soil health improvement with carbon increase following one time amendment of biochar in a paddy soil – A rice farm trial. Geoderma, 2020, 376, 114567.	5.1	40
74	Greenhouse gas mitigation potential in crop production with biochar soil amendment—a carbon footprint assessment for crossâ€site field experiments from China. GCB Bioenergy, 2019, 11, 592-605.	5.6	38
75	Extractable pool of biochar controls on crop productivity rather than greenhouse gas emission from a rice paddy under rice-wheat rotation. Scientific Reports, 2018, 8, 802.	3.3	37
76	Long-term rice cultivation stabilizes soil organic carbon and promotes soil microbial activity in a salt marsh derived soil chronosequence. Scientific Reports, 2015, 5, 15704.	3.3	36
77	A comparative study on carbon footprint of rice production between household and aggregated farms from Jiangxi, China. Environmental Monitoring and Assessment, 2015, 187, 332.	2.7	36
78	Pyrolysis of contaminated wheat straw to stabilize toxic metals in biochar but recycle the extract for agricultural use. Biomass and Bioenergy, 2018, 118, 32-39.	5.7	35
79	Greater microbial carbon use efficiency and carbon sequestration in soils: Amendment of biochar versus crop straws. GCB Bioenergy, 2020, 12, 1092-1103.	5.6	35
80	Variation of organic carbon and nitrogen in aggregate size fractions of a paddy soil under fertilisation practices from Tai Lake Region, China. Journal of the Science of Food and Agriculture, 2007, 87, 1052-1058.	3.5	34
81	Organic carbon stratification and size distribution of three typical paddy soils from Taihu Lake region, China. Journal of Environmental Sciences, 2008, 20, 456-463.	6.1	33
82	Functional and structural responses of bacterial and fungal communities from paddy fields following long-term rice cultivation. Journal of Soils and Sediments, 2016, 16, 1460-1471.	3.0	33
83	Could biochar amendment be a tool to improve soil availability and plant uptake of phosphorus? A meta-analysis of published experiments. Environmental Science and Pollution Research, 2021, 28, 34108-34120.	5.3	31
84	Climate change may interact with nitrogen fertilizer management leading to different ammonia loss in China's croplands. Global Change Biology, 2021, 27, 6525-6535.	9.5	31
85	Changes in nutrient uptake and utilization by rice under simulated climate change conditions: A 2-year experiment in a paddy field. Agricultural and Forest Meteorology, 2018, 250-251, 202-208.	4.8	30
86	An assessment of emergy, energy, and cost-benefits of grain production over 6Âyears following a biochar amendment in a rice paddy from China. Environmental Science and Pollution Research, 2018, 25, 9683-9696.	5.3	30
87	Enhancing plant N uptake with biochar-based fertilizers: limitation of sorption and prospects. Plant and Soil, 2022, 475, 213-236.	3.7	30
88	Perspectives on studies on soil carbon stocks and the carbon sequestration potential of China. Science Bulletin, 2011, 56, 3748-3758.	1.7	29
89	Responses of Methanogenic and Methanotrophic Communities to Elevated Atmospheric CO2 and Temperature in a Paddy Field. Frontiers in Microbiology, 2016, 7, 1895.	3.5	29
90	Changes in plant C, N and P ratios under elevated [CO2] and canopy warming in a rice-winter wheat rotation system. Scientific Reports, 2019, 9, 5424.	3.3	29

#	Article	IF	CITATIONS
91	Wheat and maize-derived water-washed and unwashed biochar improved the nutrients phytoavailability and the grain and straw yield of rice and wheat: A field trial for sustainable management of paddy soils. Journal of Environmental Management, 2021, 297, 113250.	7.8	29
92	Water Extract from Straw Biochar Used for Plant Growth Promotion: An Initial Test. BioResources, 2015, 11, .	1.0	28
93	Abundance, composition and activity of denitrifier communities in metal polluted paddy soils. Scientific Reports, 2016, 6, 19086.	3.3	28
94	Evaluation of four modelling approaches to estimate nitrous oxide emissions in China's cropland. Science of the Total Environment, 2019, 652, 1279-1289.	8.0	27
95	Re-assessing nitrous oxide emissions from croplands across Mainland China. Agriculture, Ecosystems and Environment, 2018, 268, 70-78.	5.3	26
96	Short-term biochar manipulation of microbial nitrogen transformation in wheat rhizosphere of a metal contaminated Inceptisol from North China plain. Science of the Total Environment, 2018, 640-641, 1287-1296.	8.0	26
97	Modelling greenhouse gas emissions and mitigation potentials in fertilized paddy rice fields in Bangladesh. Geoderma, 2019, 341, 206-215.	5.1	26
98	Sequestration of maize crop straw C in different soils: Role of oxyhydrates in chemical binding and stabilization as recalcitrance. Chemosphere, 2012, 87, 649-654.	8.2	25
99	Abundance, Composition and Activity of Ammonia Oxidizer and Denitrifier Communities in Metal Polluted Rice Paddies from South China. PLoS ONE, 2014, 9, e102000.	2.5	24
100	Soil organic carbon fractions and microbial community and functions under changes in vegetation: a case of vegetation succession in karst forest. Environmental Earth Sciences, 2014, 71, 3727-3735.	2.7	23
101	Microbial activity promoted with organic carbon accumulation in macroaggregates of paddy soils under long-term rice cultivation. Biogeosciences, 2016, 13, 6565-6586.	3.3	23
102	Abundance and composition response of wheat field soil bacterial and fungal communities to elevated CO2 and increased air temperature. Biology and Fertility of Soils, 2017, 53, 3-8.	4.3	23
103	Changes in soil nematode abundance and composition under elevated [CO2] and canopy warming in a rice paddy field. Plant and Soil, 2019, 445, 425-437.	3.7	23
104	Biochar increases maize yield by promoting root growth in the rainfed region. Archives of Agronomy and Soil Science, 2021, 67, 1411-1424.	2.6	23
105	Assessment of climate change awareness and agronomic practices in an agricultural region of Henan Province, China. Environment, Development and Sustainability, 2015, 17, 379-391.	5.0	22
106	Pyrolyzed municipal sewage sludge ensured safe grain production while reduced C emissions in a paddy soil under rice and wheat rotation. Environmental Science and Pollution Research, 2019, 26, 9244-9256.	5.3	22
107	Effects of elevated atmospheric CO2 concentration and temperature on the soil profile methane distribution and diffusion in rice–wheat rotation system. Journal of Environmental Sciences, 2015, 32, 62-71.	6.1	20
108	Changes in micronutrient availability and plant uptake under simulated climate change in winter wheat field. Journal of Soils and Sediments, 2016, 16, 2666-2675.	3.0	20

Genxing Pan

#	Article	IF	CITATIONS
109	The potential for using smartphones as portable soil nutrient analyzers on suburban farms in central East China. Scientific Reports, 2019, 9, 16424.	3.3	20
110	Long-term elevated CO2 and warming enhance microbial necromass carbon accumulation in a paddy soil. Biology and Fertility of Soils, 2021, 57, 673-684.	4.3	20
111	Responses of wheat and rice grain mineral quality to elevated carbon dioxide and canopy warming. Field Crops Research, 2020, 249, 107753.	5.1	19
112	Winter wheat water requirement and utilization efficiency under simulated climate change conditions: A Penman-Monteith model evaluation. Agricultural Water Management, 2018, 197, 100-109.	5.6	18
113	Estimating ammonia emissions from cropland in China based on the establishment of agro-region-specific models. Agricultural and Forest Meteorology, 2021, 303, 108373.	4.8	18
114	Exploring the environmental impact of crop production in China using a comprehensive footprint approach. Science of the Total Environment, 2022, 824, 153898.	8.0	18
115	Does metal pollution matter with C retention by rice soil?. Scientific Reports, 2015, 5, 13233.	3.3	17
116	Effects of iron-modified biochar with S-rich and Si-rich feedstocks on Cd immobilization in the soil-rice system. Ecotoxicology and Environmental Safety, 2021, 225, 112764.	6.0	17
117	Comprehensive evaluation of environmental footprints of regional crop production: A case study of Chizhou City, China. Ecological Economics, 2019, 164, 106360.	5.7	16
118	Pyrolyzed biowastes deactivated potentially toxic metals and eliminated antibiotic resistant genes for healthy vegetable production. Journal of Cleaner Production, 2020, 276, 124208.	9.3	16
119	Improved ginseng production under continuous cropping through soil health reinforcement and rhizosphere microbial manipulation with biochar: a field study of <i>Panax ginseng</i> from Northeast China. Horticulture Research, 2022, 9, .	6.3	15
120	Factors influencing the adoption of soil conservation techniques in Northern Rwanda. Journal of Plant Nutrition and Soil Science, 2016, 179, 367-375.	1.9	14
121	Re-estimating methane emissions from Chinese paddy fields based on a regional empirical model and high-spatial-resolution data. Environmental Pollution, 2020, 265, 115017.	7.5	14
122	Biochar decreases Cd mobility and rice (Oryza sativa L.) uptake by affecting soil iron and sulfur cycling. Science of the Total Environment, 2022, 836, 155547.	8.0	14
123	Effects of acetylene at low concentrations on nitrification, mineralization and microbial biomass nitrogen concentrations in forest soils. Science Bulletin, 2009, 54, 296-303.	9.0	13
124	Rice Seedling Growth Promotion by Biochar Varies With Genotypes and Application Dosages. Frontiers in Plant Science, 2021, 12, 580462.	3.6	13
125	Macroaggregates as biochemically functional hotspots in soil matrix: Evidence from a rice paddy under long-term fertilization treatments in the Taihu Lake Plain, eastern China. Applied Soil Ecology, 2019, 138, 262-273.	4.3	12
126	The Water-Soluble Pool in Biochar Dominates Maize Plant Growth Promotion Under Biochar Amendment. Journal of Plant Growth Regulation, 2021, 40, 1466-1476.	5.1	12

#	Article	IF	CITATIONS
127	Impact of biochar amendment on soil hydrological properties and crop water use efficiency: A global metaâ€analysis and structural equation model. GCB Bioenergy, 2022, 14, 657-668.	5.6	12
128	Effects of Pulp Wastewater Irrigation on Soil Enzyme Activities and Respiration from a Managed Wetland. Soil and Sediment Contamination, 2010, 19, 204-216.	1.9	11
129	Amendment of straw biochar increased molecular diversity and enhanced preservation of plant derived organic matter in extracted fractions of a rice paddy. Journal of Environmental Management, 2021, 285, 112104.	7.8	11
130	The role of soils in regulation of freshwater and coastal water quality. Philosophical Transactions of the Royal Society B: Biological Sciences, 2021, 376, 20200176.	4.0	11
131	Assessing the impacts of biocharâ€blended urea on nitrogen use efficiency and soil retention in wheat production. GCB Bioenergy, 2022, 14, 65-83.	5.6	11
132	Quantitative assessment of the effects of biochar amendment on photosynthetic carbon assimilation and dynamics in a rice–soil system. New Phytologist, 2021, 232, 1250-1258.	7.3	10
133	Root-Derived Short-Chain Suberin Diacids from Rice and Rape Seed in a Paddy Soil under Rice Cultivar Treatments. PLoS ONE, 2015, 10, e0127474.	2.5	10
134	Pool complexity and molecular diversity shaped topsoil organic matter accumulation following decadal forest restoration in a karst terrain. Soil Biology and Biochemistry, 2022, 166, 108553.	8.8	10
135	The effects of biochar soil amendment on rice growth may vary greatly with rice genotypes. Science of the Total Environment, 2022, 810, 152223.	8.0	10
136	Aggregate fractions shaped molecular composition change of soil organic matter in a rice paddy under elevated CO2 and air warming. Soil Biology and Biochemistry, 2021, 159, 108289.	8.8	9
137	Copyrolysis of food waste and rice husk to biochar to create a sustainable resource for soil amendment: A pilot-scale case study in Jinhua, China. Journal of Cleaner Production, 2022, 347, 131269.	9.3	8
138	Tâ€FACE studies reveal that increased temperature exerts an effect opposite to that of elevated CO ₂ on nutrient concentration and bioavailability in rice and wheat grains. Food and Energy Security, 2022, 11, e336.	4.3	7
139	Investigating the cadmium adsorption capacities of crop straw biochars produced using various feedstocks and pyrolysis temperatures. Environmental Science and Pollution Research, 2021, 28, 21516-21527.	5.3	6
140	Amendment of crop residue in different forms shifted micro-pore system structure and potential functionality of macroaggregates while changed their mass proportion and carbon storage of paddy topsoil. Geoderma, 2022, 409, 115643.	5.1	6
141	Comparison of heavy metal speciation, transfer and their key influential factors in vegetable soils contaminated from industrial operation and organic fertilization. Journal of Soils and Sediments, 2022, 22, 1735-1745.	3.0	6
142	A comparison between the characteristics of a biochar-NPK granule and a commercial NPK granule for application in the soil. Science of the Total Environment, 2022, 832, 155021.	8.0	5
143	Microwave Aqueous Synthesis of Mesoporous Carbons for Highly Effective Adsorption of Berberine Hydrochloride and Matrine. Journal of Inorganic and Organometallic Polymers and Materials, 2020, 30, 2551-2561.	3.7	4
144	Macroaggregates Serve as Micro-Hotspots Enriched With Functional and Networked Microbial Communities and Enhanced Under Organic/Inorganic Fertilization in a Paddy Topsoil From Southeastern China. Frontiers in Microbiology, 2022, 13, 831746.	3.5	4

#	Article	IF	CITATIONS
145	Influence of long-term different fertilization on soil weed seed bank diversity of a paddy soil under rice/rape rotation. Frontiers of Biology in China: Selected Publications From Chinese Universities, 2008, 3, 320-327.	0.2	3
146	A Laboratory Rig and a Scale―and Energy ontrolled Procedure for Tender Soil Fragmentation Test. Soil Science Society of America Journal, 2009, 73, 1286-1290.	2.2	3
147	Conference Report: Soil organic matter dynamics: beyond carbon: a report of the 4th International Symposium on Soil Organic Matter Dynamics. Carbon Management, 2013, 4, 485-489.	2.4	3
148	Enhancing carbon sequestration for mitigation and co-benefits in agriculture: actions and novel practices. Carbon Management, 2014, 5, 127-129.	2.4	2
149	Reconsidering the fate of fertilizer N: A response to Quan et al Global Change Biology, 2021, 27, e1.	9.5	1
150	Cellulase Activity in Physically Isolated Fractions of a Paddy Soil. , 2009, , .		0
151	Mechanism and kinetics of aluminum dissolution during copper sorption by acidity paddy soil in South China. Journal of Environmental Sciences, 2015, 34, 100-106.	6.1	0