G K Rajanikant

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2277018/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Post stroke depression: The sequelae of cerebral stroke. Neuroscience and Biobehavioral Reviews, 2018, 90, 104-114.	2.9	176
2	Nanotechnology and Nanomedicine: Going Small Means Aiming Big. Current Pharmaceutical Design, 2010, 16, 1882-1892.	0.9	133
3	Asiatic acid, a pentacyclic triterpene from <i>Centella asiatica</i> , is neuroprotective in a mouse model of focal cerebral ischemia. Journal of Neuroscience Research, 2009, 87, 2541-2550.	1.3	131
4	Carnosine Is Neuroprotective Against Permanent Focal Cerebral Ischemia in Mice. Stroke, 2007, 38, 3023-3031.	1.0	115
5	A Smoothened receptor agonist is neuroprotective and promotes regeneration after ischemic brain injury. Cell Death and Disease, 2014, 5, e1481-e1481.	2.7	109
6	Alteration in the glutathione, glutathione peroxidase, superoxide dismutase and lipid peroxidation by ascorbic acid in the skin of mice exposed to fractionated Î ³ radiation. Clinica Chimica Acta, 2003, 332, 111-121.	0.5	97
7	Role of curcumin, a naturally occurring phenolic compound of turmeric in accelerating the repair of excision wound, in mice whole-body exposed to various doses of γ-radiation. Journal of Surgical Research, 2004, 120, 127-138.	0.8	96
8	Acceleration of wound repair by curcumin in the excision wound of mice exposed to different doses of fractionated <i>γ</i> radiation. International Wound Journal, 2012, 9, 76-92.	1.3	78
9	Curcumin Treatment Enhances the Repair and Regeneration of Wounds in Mice Exposed to Hemibody ??-Irradiation. Plastic and Reconstructive Surgery, 2005, 115, 515-528.	0.7	77
10	Oxidative stress – assassin behind the ischemic stroke. Folia Neuropathologica, 2012, 3, 219-230.	0.5	76
11	Calcium Ion – The Key Player in Cerebral Ischemia. Current Medicinal Chemistry, 2014, 21, 2065-2075.	1.2	76
12	Differential neuroprotective effects of carnosine, anserine, and <i>N</i> â€acetyl carnosine against permanent focal ischemia. Journal of Neuroscience Research, 2008, 86, 2984-2991.	1.3	60
13	Role of Autophagy in Endothelial Damage and Blood–Brain Barrier Disruption in Ischemic Stroke. Stroke, 2018, 49, 1571-1579.	1.0	60
14	The Therapeutic Potential of Statins in Neurological Disorders. Current Medicinal Chemistry, 2007, 14, 103-112.	1.2	58
15	Necroptosis: Who Knew There were so Many Interesting Ways to Die?. CNS and Neurological Disorders - Drug Targets, 2014, 13, 42-51.	0.8	57
16	Hypoxia Mimetic Agents for Ischemic Stroke. Frontiers in Cell and Developmental Biology, 2018, 6, 175.	1.8	54
17	Cerebral Ischemic Preconditioning: the Road So Far…. Molecular Neurobiology, 2016, 53, 2579-2593.	1.9	42
18	Hydrogel Scaffolds: Towards Restitution of Ischemic Stroke-Injured Brain. Translational Stroke Research, 2019, 10, 1-18.	2.3	41

G K Rajanikant

#	Article	IF	CITATIONS
19	Computational identification of novel histone deacetylase inhibitors by docking based QSAR. Computers in Biology and Medicine, 2012, 42, 697-705.	3.9	38
20	Ascorbic acid increases healing of excision wounds of mice whole body exposed to different doses of Î ³ -radiation. Burns, 2007, 33, 484-494.	1.1	37
21	Death Associated Protein Kinases: Molecular Structure and Brain Injury. International Journal of Molecular Sciences, 2013, 14, 13858-13872.	1.8	37
22	Systematic review and stratified meta-analysis of the efficacy of carnosine in animal models of ischemic stroke. Journal of Cerebral Blood Flow and Metabolism, 2016, 36, 1686-1694.	2.4	37
23	miR-9 Upregulation Integrates Post-ischemic Neuronal Survival and Regeneration In Vitro. Cellular and Molecular Neurobiology, 2019, 39, 223-240.	1.7	37
24	Evaluation of the Effect of Ascorbic Acid Treatment on Wound Healing in Mice Exposed to Different Doses of Fractionated Gamma Radiation. Radiation Research, 2003, 159, 371-380.	0.7	33
25	Effect of abana (a herbal preparation) on the radiation-induced mortality in mice. Journal of Ethnopharmacology, 2003, 86, 159-165.	2.0	30
26	Nanotechnology Based Diagnostic and Therapeutic Strategies for Neuroscience with Special Emphasis on Ischemic Stroke. Current Medicinal Chemistry, 2012, 19, 744-756.	1.2	29
27	CypD: The Key to the Death Door. CNS and Neurological Disorders - Drug Targets, 2015, 14, 654-663.	0.8	29
28	Alpha-linolenic acid suppresses dopaminergic neurodegeneration induced by 6-OHDA in C. elegans. Physiology and Behavior, 2015, 151, 563-569.	1.0	28
29	Augmentation of wound healing by ascorbic acid treatment in mice exposed toγâ€radiation. International Journal of Radiation Biology, 2004, 80, 347-354.	1.0	26
30	Huntington disease: Can a zebrafish trail leave more than a ripple?. Neuroscience and Biobehavioral Reviews, 2014, 45, 258-261.	2.9	25
31	Decoding the ubiquitous role of microRNAs in neurogenesis. Molecular Neurobiology, 2017, 54, 2003-2011.	1.9	25
32	Nickel cobaltite/multi-walled carbon nanotube flexible sensor for the electrochemical detection of dopamine released by human neural cells. Journal of Materials Chemistry C, 2022, 10, 3048-3060.	2.7	25
33	Pharmacophore generation and atom-based 3D-QSAR of novel quinoline-3-carbonitrile derivatives as Tpl2 kinase inhibitors. Journal of Enzyme Inhibition and Medicinal Chemistry, 2012, 27, 558-570.	2.5	21
34	Lymphocyte Cell Kinase Activation Mediates Neuroprotection during Ischemic Preconditioning. Journal of Neuroscience, 2012, 32, 7278-7286.	1.7	21
35	Folic Acid Exerts Post-Ischemic Neuroprotection In Vitro Through HIF-1α Stabilization. Molecular Neurobiology, 2018, 55, 8328-8345.	1.9	19
36	Drp1 in Ischemic Neuronal Death: An Unusual Suspect. Current Medicinal Chemistry, 2014, 21, 2183-2189.	1.2	19

G K Rajanikant

#	Article	IF	CITATIONS
37	A rational approach to selective pharmacophore designing: an innovative strategy for specific recognition of Gsk3β. Molecular Diversity, 2012, 16, 553-562.	2.1	17
38	Identification of novel potential HIF-prolyl hydroxylase inhibitors by in silico screening. Molecular Diversity, 2012, 16, 193-202.	2.1	16
39	Carnosine Protects against Cerebral Ischemic Injury by Inhibiting Matrix-Metalloproteinases. International Journal of Molecular Sciences, 2021, 22, 7495.	1.8	16
40	Amikacin Inhibits miR-497 Maturation and Exerts Post-ischemic Neuroprotection. Molecular Neurobiology, 2017, 54, 3683-3694.	1.9	14
41	Rodent Gymnastics: Neurobehavioral Assays in Ischemic Stroke. Molecular Neurobiology, 2017, 54, 6750-6761.	1.9	14
42	Taxifolin as dual inhibitor of Mtb DNA gyrase and isoleucyl-tRNA synthetase: in silico molecular docking, dynamics simulation and in vitro assays. In Silico Pharmacology, 2018, 6, 8.	1.8	14
43	Glycogen Synthase Kinase-β3 in Ischemic Neuronal Death. Current Neurovascular Research, 2014, 11, 271-278.	0.4	14
44	Computational Repositioning and Experimental Validation of Approved Drugs for HIF-Prolyl Hydroxylase Inhibition. Journal of Chemical Information and Modeling, 2013, 53, 1818-1824.	2.5	12
45	Ensemble pharmacophore meets ensemble docking: a novel screening strategy for the identification of RIPK1 inhibitors. Journal of Computer-Aided Molecular Design, 2014, 28, 779-794.	1.3	12
46	A Novel Five-Node Feed-Forward Loop Unravels miRNA-Gene-TF Regulatory Relationships in Ischemic Stroke. Molecular Neurobiology, 2018, 55, 8251-8262.	1.9	12
47	Circular RNAs in Brain Physiology and Disease. Advances in Experimental Medicine and Biology, 2018, 1087, 231-237.	0.8	12
48	ISCHEMIRs: Finding a Way Through the Obstructed Cerebral Arteries. Current Drug Targets, 2016, 17, 800-810.	1.0	11
49	Novel RIPK3 inhibitors discovered through a structure-based approach exert post-ischemic neuroprotection. Molecular Diversity, 2016, 20, 719-728.	2.1	10
50	Finding Needles in a Haystack: Application of Network Analysis and Target Enrichment Studies for the Identification of Potential Anti-Diabetic Phytochemicals. PLoS ONE, 2014, 9, e112911.	1,1	10
51	Role of KCa3.1 Channels in CNS Diseases: A Concise Review. CNS and Neurological Disorders - Drug Targets, 2016, 15, 1299-1305.	0.8	10
52	In Silico Prediction of Novel Inhibitors of the DNA Binding Activity of FoxG1. Medicinal Chemistry, 2012, 8, 1155-1162.	0.7	10
53	A Novel Multi-Target Drug Screening Strategy Directed Against Key Proteins of DAPk Family. Combinatorial Chemistry and High Throughput Screening, 2013, 16, 449-457.	0.6	9
54	A Combination of 3D-QSAR Modeling and Molecular Docking Approach for the Discovery of Potential HIF Prolyl Hydroxylase Inhibitors. Medicinal Chemistry, 2013, 9, 360-370.	0.7	9

G K RAJANIKANT

#	Article	IF	CITATIONS
55	β-N-oxalyl-L-α, β- diaminopropionic acid induces HRE expression by inhibiting HIF-prolyl hydroxylase-2 in normoxic conditions. European Journal of Pharmacology, 2016, 791, 405-411.	1.7	8
56	The synthesis of a novel pentoxifylline derivative with superior human sperm motility enhancement properties. New Journal of Chemistry, 2021, 45, 1072-1081.	1.4	8
57	In Silico Prediction of Novel Inhibitors of the DNA Binding Activity of FoxG1. Medicinal Chemistry, 2012, 8, 1155-1162.	0.7	6
58	Nanochannels: biological channel analogues. IET Nanobiotechnology, 2012, 6, 63.	1.9	6
59	Evolving Therapeutic Targets in Ischemic Stroke: A Concise Review. Current Drug Targets, 2013, 14, 497-506.	1.0	6
60	Ensembling and filtering: an effective and rapid in silico multitarget drug-design strategy to identify RIPK1 and RIPK3 inhibitors. Journal of Molecular Modeling, 2015, 21, 314.	0.8	5
61	Modelling the molecular mechanism of protein–protein interactions and their inhibition: CypD–p53 case study. Molecular Diversity, 2015, 19, 931-943.	2.1	5
62	Postischemic supplementation of folic acid improves neuronal survival and regeneration in vitro. Nutrition Research, 2020, 75, 1-14.	1.3	5
63	In Silico Identification of Potential Dynamin-Related Protein 1 Antagonists: Implications for Diseases Involving Mitochondrial Dysfunction. Combinatorial Chemistry and High Throughput Screening, 2014, 17, 25-34.	0.6	4
64	Commentary: Endophenotypes as Disease Modifiers: Decoding the Biology of Alzheimer's by Genome-wide Association Studies. CNS and Neurological Disorders - Drug Targets, 2018, 17, 6-8.	0.8	4
65	Commentary: Research Highlights ATF4: The Perpetrator in Axonal-Mediated Neurodegeneration in Alzheimer's Disease. CNS and Neurological Disorders - Drug Targets, 2014, 13, 1483-1484.	0.8	3
66	Anti-parkinsonian efficacy of target-specific GSK3β inhibitors demonstrated in Caenorhabditis elegans. Medicinal Chemistry Research, 2014, 23, 5263-5268.	1.1	3
67	Computational Prediction of a Putative Binding Site on Drp1: Implications for Antiparkinsonian Therapy. Journal of Chemical Information and Modeling, 2014, 54, 2042-2050.	2.5	3
68	The Synergistic Combination of Everolimus and Paroxetine Exerts Post-ischemic Neuroprotection In Vitro. Cellular and Molecular Neurobiology, 2018, 38, 1383-1397.	1.7	3
69	Quinoline Derivative Enhances Human Sperm Motility and Improves the Functional Competence. Reproductive Sciences, 2021, 28, 1316-1332.	1.1	3
70	Evaluation of hydroxyapatite- and zinc-coated Ti-6Al-4V surface for biomedical application using electrochemical process. Journal of the Australian Ceramic Society, 2021, 57, 107-116.	1.1	3
71	Commentary (Research Highlights: Linking Productive Autophagy to Neuroprotection: Potential) Tj ETQq1 1 0. 298-299.	784314 rgB ⁻ 0.8	T /Overlock 2
72	A comparative molecular dynamics simulation study to assess the exclusion ability of novel GSK3β inhibitors. Medicinal Chemistry Research, 2014, 23, 3092-3095.	1.1	2

#	Article	IF	CITATIONS
73	Commentary: Death Associated Protein Kinase 1: A Perp in Cerebral Ischemia. CNS and Neurological Disorders - Drug Targets, 2016, 15, 874-877.	0.8	2
74	Research Highlights BAY 1436032: A Novel Pan-mutant IDH1 Inhibitor Extends Survival of Mice with Experimental Brain Tumors. CNS and Neurological Disorders - Drug Targets, 2017, 16, 636-637.	0.8	2
75	A Critical Appraisal of the Functional Evolution of P2Y12 Antagonists as Antiplatelet Drugs. Current Pharmaceutical Design, 2012, 18, 1625-1634.	0.9	1
76	Pseudokinases: Prospects for expanding the therapeutic targets armamentarium. Advances in Protein Chemistry and Structural Biology, 2021, 124, 121-185.	1.0	1
77	An integrated chemo-informatics and in vitro experimental approach repurposes acarbose as a post-ischemic neuro-protectant. 3 Biotech, 2022, 12, 71.	1.1	1
78	Editorial : (Thematic issue: Critical Appraisal of Ischemic Stroke Pathophysiology: Road to Cerebral) Tj ETQq0 0 C	rgBT/Ove	erlock 10 Tf 5

79	Editorial (Thematic Issue: Critical Appraisal of Ischemic Stroke Pathophysiology: Road to Cerebral) Tj ETQq1 10.7	84314 rgE 1.2	ST /Overloc
80	Commentary: Research Highlights: IKKβ Mediates Aβ-Triggered Microglial Inflammation and Neuronal Death During Alzheimer's Disease. CNS and Neurological Disorders - Drug Targets, 2014, 13, 1305-1307.	0.8	0
81	Computational Design of Multi-target Kinase Inhibitors. Methods in Pharmacology and Toxicology, 2018, , 385-394.	0.1	0
82	Neuroprotective Potential of Carnosine in Cerebrovascular Diseases. International Journal of Peptide Research and Therapeutics, 2022, 28, 1.	0.9	0
83	Chapter 6. The Molecular Neuroprotective Strategies in Cerebral Ischemia: An Insight into Emerging Treatments for Oxidative Stress. RSC Drug Discovery Series, 0, , 82-104.	0.2	0