Rajkummar Buyya

List of Publications by Citations

Source: https://exaly.com/author-pdf/2276845/rajkummar-buyya-publications-by-citations.pdf

Version: 2024-04-17

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

 740
papers
 46,331
citations
 92
h-index
 201
g-index

 810
ext. papers
 56,152
ext. citations
 4.2
avg, IF
 8.49
L-index

#	Paper	IF	Citations
740	Internet of Things (IoT): A vision, architectural elements, and future directions. <i>Future Generation Computer Systems</i> , 2013 , 29, 1645-1660	7.5	6480
739	Cloud computing and emerging IT platforms: Vision, hype, and reality for delivering computing as the 5th utility. <i>Future Generation Computer Systems</i> , 2009 , 25, 599-616	7.5	3389
738	CloudSim: a toolkit for modeling and simulation of cloud computing environments and evaluation of resource provisioning algorithms. <i>Software - Practice and Experience</i> , 2011 , 41, 23-50	2.5	2485
737	Energy-aware resource allocation heuristics for efficient management of data centers for Cloud computing. <i>Future Generation Computer Systems</i> , 2012 , 28, 755-768	7.5	1649
736	Optimal online deterministic algorithms and adaptive heuristics for energy and performance efficient dynamic consolidation of virtual machines in Cloud data centers. <i>Concurrency Computation Practice and Experience</i> , 2012 , 24, 1397-1420	1.4	974
735	2008,		840
734	GridSim: a toolkit for the modeling and simulation of distributed resource management and scheduling for Grid computing. <i>Concurrency Computation Practice and Experience</i> , 2002 , 14, 1175-1220	1.4	724
733	iFogSim: A toolkit for modeling and simulation of resource management techniques in the Internet of Things, Edge and Fog computing environments. <i>Software - Practice and Experience</i> , 2017 , 47, 1275-12	2 9 6 ⁵	579
732	Fog Computing: Helping the Internet of Things Realize Its Potential. <i>Computer</i> , 2016 , 49, 112-116	1.6	577
731	A framework for ranking of cloud computing services. <i>Future Generation Computer Systems</i> , 2013 , 29, 1012-1023	7.5	546
730	A survey on vehicular cloud computing. <i>Journal of Network and Computer Applications</i> , 2014 , 40, 325-34	1 4 7.9	507
729	Economic models for resource management and scheduling in Grid computing. <i>Concurrency Computation Practice and Experience</i> , 2002 , 14, 1507-1542	1.4	480
728	Scalable Graph Processing Frameworks. ACM Computing Surveys, 2018, 51, 1-53	13.4	466
727	A taxonomy and survey of grid resource management systems for distributed computing. <i>Software - Practice and Experience</i> , 2002 , 32, 135-164	2.5	437
726	InterCloud: Utility-Oriented Federation of Cloud Computing Environments for Scaling of Application Services. <i>Lecture Notes in Computer Science</i> , 2010 , 13-31	0.9	435
725	A Taxonomy of Workflow Management Systems for Grid Computing. <i>Journal of Grid Computing</i> , 2005 , 3, 171-200	4.2	434
724	A Particle Swarm Optimization-Based Heuristic for Scheduling Workflow Applications in Cloud Computing Environments 2010 ,		422

(2014-2015)

723	Big Data computing and clouds: Trends and future directions. <i>Journal of Parallel and Distributed Computing</i> , 2015 , 79-80, 3-15	4.4	414	
722	Modeling and simulation of scalable Cloud computing environments and the CloudSim toolkit: Challenges and opportunities 2009 ,		399	
721	Deadline Based Resource Provisioningand Scheduling Algorithm for Scientific Workflows on Clouds. <i>IEEE Transactions on Cloud Computing</i> , 2014 , 2, 222-235	3.3	398	
720	Energy Efficient Resource Management in Virtualized Cloud Data Centers 2010 ,		387	
719	A Taxonomy and Survey of Energy-Efficient Data Centers and Cloud Computing Systems. <i>Advances in Computers</i> , 2011 , 82, 47-111	2.9	382	
718	Fog Computing: A Taxonomy, Survey and Future Directions. <i>Internet of Things</i> , 2018 , 103-130	1.3	362	
717	Next generation cloud computing: New trends and research directions. <i>Future Generation Computer Systems</i> , 2018 , 79, 849-861	7.5	362	
716	Heterogeneity in Mobile Cloud Computing: Taxonomy and Open Challenges. <i>IEEE Communications Surveys and Tutorials</i> , 2014 , 16, 369-392	37.1	358	
715	A taxonomy of scientific workflow systems for grid computing. SIGMOD Record, 2005, 34, 44-49	1.1	314	
7 1 4	Managing Overloaded Hosts for Dynamic Consolidation of Virtual Machines in Cloud Data Centers under Quality of Service Constraints. <i>IEEE Transactions on Parallel and Distributed Systems</i> , 2013 , 24, 13	36है: ⁷ 137	19 ²⁸⁹	
713	Cloud-Based Augmentation for Mobile Devices: Motivation, Taxonomies, and Open Challenges. <i>IEEE Communications Surveys and Tutorials</i> , 2014 , 16, 337-368	37.1	266	
712	Inter-Cloud architectures and application brokering: taxonomy and survey. <i>Software - Practice and Experience</i> , 2014 , 44, 369-390	2.5	254	
711	A computational economy for grid computing and its implementation in the Nimrod-G resource broker. <i>Future Generation Computer Systems</i> , 2002 , 18, 1061-1074	7.5	247	
710	. IEEE Transactions on Cloud Computing, 2015 , 3, 449-458	3.3	243	
709	CloudAnalyst: A CloudSim-Based Visual Modeller for Analysing Cloud Computing Environments and Applications 2010 ,		240	
708	Mobility-Aware Application Scheduling in Fog Computing. <i>IEEE Cloud Computing</i> , 2017 , 4, 26-35		234	
707	Cost of Virtual Machine Live Migration in Clouds: A Performance Evaluation. <i>Lecture Notes in Computer Science</i> , 2009 , 254-265	0.9	231	
706	Interconnected Cloud Computing Environments. ACM Computing Surveys, 2014, 47, 1-47	13.4	220	

705	Dynamically scaling applications in the cloud. <i>Computer Communication Review</i> , 2011 , 41, 45-52	1.4	216
704	Energy Efficient Allocation of Virtual Machines in Cloud Data Centers 2010 ,		213
703	Scheduling Scientific Workflow Applications with Deadline and Budget Constraints Using Genetic Algorithms. <i>Scientific Programming</i> , 2006 , 14, 217-230	1.4	213
702	Adaptive threshold-based approach for energy-efficient consolidation of virtual machines in cloud data centers 2010 ,		208
701	HealthFog: An ensemble deep learning based Smart Healthcare System for Automatic Diagnosis of Heart Diseases in integrated IoT and fog computing environments. <i>Future Generation Computer Systems</i> , 2020 , 104, 187-200	7.5	208
700	Environment-conscious scheduling of HPC applications on distributed Cloud-oriented data centers. Journal of Parallel and Distributed Computing, 2011 , 71, 732-749	4.4	205
699	High-Performance Cloud Computing: A View of Scientific Applications 2009,		205
698	. IEEE Communications Surveys and Tutorials, 2013 , 15, 1294-1313	37.1	181
697	A taxonomy of Data Grids for distributed data sharing, management, and processing. <i>ACM Computing Surveys</i> , 2006 , 38, 3	13.4	171
696	Power Aware Scheduling of Bag-of-Tasks Applications with Deadline Constraints on DVS-enabled Clusters 2007 ,		169
695	SMICloud: A Framework for Comparing and Ranking Cloud Services 2011 ,		168
694	Grids and Grid technologies for wide-area distributed computing. <i>Software - Practice and Experience</i> , 2002 , 32, 1437-1466	2.5	168
693	Evaluating the cost-benefit of using cloud computing to extend the capacity of clusters 2009,		166
692	Workflow Scheduling Algorithms for Grid Computing. Studies in Computational Intelligence, 2008, 173-2	21<u>4</u>. 8	162
691	An autonomic cloud environment for hosting ECG data analysis services. <i>Future Generation Computer Systems</i> , 2012 , 28, 147-154	7.5	152
690	SLA-Based Resource Allocation for Software as a Service Provider (SaaS) in Cloud Computing Environments 2011 ,		152
689	Distributed data stream processing and edge computing: A survey on resource elasticity and future directions. <i>Journal of Network and Computer Applications</i> , 2018 , 103, 1-17	7.9	142
688	Meeting Deadlines of Scientific Workflows in Public Clouds with Tasks Replication. <i>IEEE Transactions on Parallel and Distributed Systems</i> , 2014 , 25, 1787-1796	3.7	140

(2021-2012)

687	SLA-based admission control for a Software-as-a-Service provider in Cloud computing environments. <i>Journal of Computer and System Sciences</i> , 2012 , 78, 1280-1299	1	140	
686	SLA-based virtual machine management for heterogeneous workloads in a cloud datacenter. <i>Journal of Network and Computer Applications</i> , 2014 , 45, 108-120	7.9	139	
685	FogBus: A Blockchain-based Lightweight Framework for Edge and Fog Computing. <i>Journal of Systems and Software</i> , 2019 , 154, 22-36	3.3	137	
684	Virtual Machine Provisioning Based on Analytical Performance and QoS in Cloud Computing Environments 2011 ,		132	
683	An energy-aware service composition algorithm for multiple cloud-based IoT applications. <i>Journal of Network and Computer Applications</i> , 2017 , 89, 96-108	7.9	130	
682	The Aneka platform and QoS-driven resource provisioning for elastic applications on hybrid Clouds. Future Generation Computer Systems, 2012, 28, 861-870	7.5	129	
681	Towards autonomic detection of SLA violations in Cloud infrastructures. <i>Future Generation Computer Systems</i> , 2012 , 28, 1017-1029	7.5	126	
680	Quality of Experience (QoE)-aware placement of applications in Fog computing environments. <i>Journal of Parallel and Distributed Computing</i> , 2019 , 132, 190-203	4.4	124	
679	DDoS attacks in cloud computing: Issues, taxonomy, and future directions. <i>Computer Communications</i> , 2017 , 107, 30-48	5.1	121	
678	A Manifesto for Future Generation Cloud Computing. ACM Computing Surveys, 2019, 51, 1-38	13.4	110	
677	Computational Intelligence Based QoS-Aware Web Service Composition: A Systematic Literature Review. <i>IEEE Transactions on Services Computing</i> , 2017 , 10, 475-492	4.8	109	
676	Introduction to Cloud Computing 2011 , 1-41		109	
675	Market-oriented Grids and Utility Computing: The State-of-the-art and Future Directions. <i>Journal of Grid Computing</i> , 2008 , 6, 255-276	4.2	109	
674	NetworkCloudSim: Modelling Parallel Applications in Cloud Simulations 2011 ,		108	
673	Deadline-driven provisioning of resources for scientific applications in hybrid clouds with Aneka. <i>Future Generation Computer Systems</i> , 2012 , 28, 58-65	7.5	107	
672	A toolkit for modelling and simulating data Grids: an extension to GridSim. <i>Concurrency Computation Practice and Experience</i> , 2008 , 20, 1591-1609	1.4	107	
671	An efficient and secure privacy-preserving approach for outsourced data of resource constrained mobile devices in cloud computing. <i>Journal of Network and Computer Applications</i> , 2016 , 64, 12-22	7.9	105	
670	A drone-based networked system and methods for combating coronavirus disease (COVID-19) pandemic. <i>Future Generation Computer Systems</i> , 2021 , 115, 1-19	7.5	104	

669	A survey on load balancing algorithms for virtual machines placement in cloud computing. <i>Concurrency Computation Practice and Experience</i> , 2017 , 29, e4123	1.4	103
668	Market-Oriented Cloud Computing: Vision, Hype, and Reality of Delivering Computing as the 5th Utility 2009 ,		103
667	A Grid service broker for scheduling e-Science applications on global data Grids. <i>Concurrency Computation Practice and Experience</i> , 2006 , 18, 685-699	1.4	103
666	A budget constrained scheduling of workflow applications on utility Grids using genetic algorithms 2006 ,		103
665	Latency-Aware Application Module Management for Fog Computing Environments. <i>ACM Transactions on Internet Technology</i> , 2019 , 19, 1-21	3.8	103
664	SLA-oriented resource provisioning for cloud computing: Challenges, architecture, and solutions 2011 ,		102
663	Mobile code offloading: from concept to practice and beyond 2015 , 53, 80-88		101
662	FOCAN: A Fog-supported smart city network architecture for management of applications in the Internet of Everything environments. <i>Journal of Parallel and Distributed Computing</i> , 2019 , 132, 274-283	4.4	101
661	OpenStack Neat: a framework for dynamic and energy-efficient consolidation of virtual machines in OpenStack clouds. <i>Concurrency Computation Practice and Experience</i> , 2015 , 27, 1310-1333	1.4	99
660	Failure-aware resource provisioning for hybrid Cloud infrastructure. <i>Journal of Parallel and Distributed Computing</i> , 2012 , 72, 1318-1331	4.4	99
659	Cloudbus Toolkit for Market-Oriented Cloud Computing. Lecture Notes in Computer Science, 2009, 24-44	10.9	99
658	. IEEE Communications Surveys and Tutorials, 2018 , 20, 2101-2132	37.1	98
657	Seamless application execution in mobile cloud computing: Motivation, taxonomy, and open challenges. <i>Journal of Network and Computer Applications</i> , 2015 , 52, 154-172	7.9	97
656	Virtual Machine Consolidation in Cloud Data Centers Using ACO Metaheuristic. <i>Lecture Notes in Computer Science</i> , 2014 , 306-317	0.9	96
655	MetaCDN: Harnessing Btorage CloudsIfor high performance content delivery. <i>Journal of Network and Computer Applications</i> , 2009 , 32, 1012-1022	7.9	96
654	Application partitioning algorithms in mobile cloud computing: Taxonomy, review and future directions. <i>Journal of Network and Computer Applications</i> , 2015 , 48, 99-117	7.9	95
653	Energy-aware simulation with DVFS. Simulation Modelling Practice and Theory, 2013, 39, 76-91	3.9	94
652	A taxonomy and survey on scheduling algorithms for scientific workflows in IaaS cloud computing environments. <i>Concurrency Computation Practice and Experience</i> , 2017 , 29, e4041	1.4	93

(2004-2011)

Power-aware provisioning of virtual machines for real-time Cloud services. <i>Concurrency Computation Practice and Experience</i> , 2011 , 23, 1491-1505	1.4	93
Power-aware provisioning of Cloud resources for real-time services 2009,		93
Statistical Modeling of Spot Instance Prices in Public Cloud Environments 2011 ,		92
Optimizing the makespan and reliability for workflow applications with reputation and a look-ahead genetic algorithm. <i>Future Generation Computer Systems</i> , 2011 , 27, 1124-1134	7.5	91
The anatomy of big data computing. Software - Practice and Experience, 2016, 46, 79-105	2.5	90
Cloud Service Reliability Enhancement via Virtual Machine Placement Optimization. <i>IEEE Transactions on Services Computing</i> , 2017 , 10, 902-913	4.8	86
A cost-benefit analysis of using cloud computing to extend the capacity of clusters. <i>Cluster Computing</i> , 2010 , 13, 335-347	2.1	86
Adaptive workflow scheduling for dynamic grid and cloud computing environment. <i>Concurrency Computation Practice and Experience</i> , 2013 , 25, 1816-1842	1.4	84
Auto-Scaling Web Applications in Clouds. ACM Computing Surveys, 2018, 51, 1-33	13.4	83
Multi-objective planning for workflow execution on Grids 2007,		82
Ensuring Security and Privacy Preservation for Cloud Data Services. <i>ACM Computing Surveys</i> , 2016 , 49, 1-39	13.4	81
Multiobjective differential evolution for scheduling workflow applications on global Grids. <i>Concurrency Computation Practice and Experience</i> , 2009 , 21, 1742-1756	1.4	81
Time and cost trade-off management for scheduling parallel applications on Utility Grids. <i>Future Generation Computer Systems</i> , 2010 , 26, 1344-1355	7.5	80
Resource Provisioning Policies to Increase IaaS Provider's Profit in a Federated Cloud Environment 2011 ,		79
The Virtual Laboratory: a toolset to enable distributed molecular modelling for drug design on the World-Wide Grid. <i>Concurrency Computation Practice and Experience</i> , 2003 , 15, 1-25	1.4	79
Remote Data Auditing in Cloud Computing Environments. ACM Computing Surveys, 2015, 47, 1-34	13.4	77
Robust Scheduling of Scientific Workflows with Deadline and Budget Constraints in Clouds 2014 ,		75
Robust Scheduling of Sciencine Work tows with Deadline and Budget Constraints in Clouds 2014,		75
	Power-aware provisioning of Cloud resources for real-time services 2009. Statistical Modeling of Spot Instance Prices in Public Cloud Environments 2011, Optimizing the makespan and reliability for workflow applications with reputation and a look-ahead genetic algorithm. Future Generation Computer Systems, 2011, 27, 1124-1134 The anatomy of big data computing. Software - Practice and Experience, 2016, 46, 79-105 Cloud Service Reliability Enhancement via Virtual Machine Placement Optimization. IEEE Transactions on Services Computing, 2017, 10, 902-913 A cost-benefit analysis of using cloud computing to extend the capacity of clusters. Cluster Computing, 2010, 13, 335-347 Adaptive workflow scheduling for dynamic grid and cloud computing environment. Concurrency Computation Practice and Experience, 2013, 25, 1816-1842 Auto-Scaling Web Applications in Clouds. ACM Computing Surveys, 2018, 51, 1-33 Multi-objective planning for workflow execution on Grids 2007, Ensuring Security and Privacy Preservation for Cloud Data Services. ACM Computing Surveys, 2016, 49, 1-39 Multiobjective differential evolution for scheduling workflow applications on global Grids. Concurrency Computation Practice and Experience, 2009, 21, 1742-1756 Time and cost trade-off management for scheduling parallel applications on Utility Grids. Future Generation Computer Systems, 2010, 26, 1344-1355 Resource Provisioning Policies to Increase laas Provider's Profit in a Federated Cloud Environment 2011, The Virtual Laboratory: a toolset to enable distributed molecular modelling for drug design on the World-Wide Grid. Concurrency Computation Practice and Experience, 2003, 15, 1-25	Power-aware provisioning of Cloud resources for real-time services 2009, Statistical Modeling of Spot Instance Prices in Public Cloud Environments 2011, Optimizing the makespan and reliability for workflow applications with reputation and a look-ahead genetic algorithm. Future Generation Computer Systems, 2011, 27, 1124-1134 75 The anatomy of big data computing. Software - Practice and Experience, 2016, 46, 79-105 2.5 Cloud Service Reliability Enhancement via Virtual Machine Placement Optimization. IEEE Transactions on Services Computing, 2017, 10, 902-913 4.8 A cost-benefit analysis of using cloud computing to extend the capacity of clusters. Cluster Computing, 2010, 13, 335-347 Adaptive workflow scheduling for dynamic grid and cloud computing environment. Concurrency Computation Practice and Experience, 2013, 25, 1816-1842 Auto-Scaling Web Applications in Clouds. ACM Computing Surveys, 2018, 51, 1-33 13-4 Multi-objective planning for workflow execution on Grids 2007, Ensuring Security and Privacy Preservation for Cloud Data Services. ACM Computing Surveys, 2016, 49, 1-39 Multiobjective differential evolution for scheduling workflow applications on global Grids. Concurrency Computation Practice and Experience, 2009, 21, 1742-1756 13-4 Resource Provisioning Policies to Increase laaS Provider's Profit in a Federated Cloud Environment 2011, The Virtual Laboratory: a toolset to enable distributed molecular modelling for drug design on the World-Wide Grid. Concurrency Computation Practice and Experience, 2003, 15, 1-25

633	Scheduling parameter sweep applications on global Grids: a deadline and budget constrained costlime optimization algorithm. <i>Software - Practice and Experience</i> , 2005 , 35, 491-512	2.5	74
632	mCloud: A Context-Aware Offloading Framework for Heterogeneous Mobile Cloud. <i>IEEE Transactions on Services Computing</i> , 2017 , 10, 797-810	4.8	73
631	Pricing Cloud Compute Commodities: A Novel Financial Economic Model 2012 ,		72
630	ContainerCloudSim: An environment for modeling and simulation of containers in cloud data centers. <i>Software - Practice and Experience</i> , 2017 , 47, 505-521	2.5	71
629	Indie Fog: An Efficient Fog-Computing Infrastructure for the Internet of Things. <i>Computer</i> , 2017 , 50, 92	- 9.8 6	69
628	. IEEE Transactions on Services Computing, 2014 , 7, 465-485	4.8	69
627	Fault-tolerant Workflow Scheduling using Spot Instances on Clouds. <i>Procedia Computer Science</i> , 2014 , 29, 523-533	1.6	69
626	An Application Placement Technique for Concurrent IoT Applications in Edge and Fog Computing Environments. <i>IEEE Transactions on Mobile Computing</i> , 2021 , 20, 1298-1311	4.6	69
625	Social Internet of Things (SIoT): Foundations, thrust areas, systematic review and future directions. <i>Computer Communications</i> , 2019 , 139, 32-57	5.1	68
624	A Context Sensitive Offloading Scheme for Mobile Cloud Computing Service 2015,		68
623	Autonomic metered pricing for a utility computing service. <i>Future Generation Computer Systems</i> , 2010 , 26, 1368-1380	7.5	68
622	Bandwidth-aware divisible task scheduling for cloud computing. <i>Software - Practice and Experience</i> , 2014 , 44, 163-174	2.5	67
621	Characterizing spot price dynamics in public cloud environments. <i>Future Generation Computer Systems</i> , 2013 , 29, 988-999	7.5	67
620	Cloud-Fog Interoperability in IoT-enabled Healthcare Solutions 2018,		66
619	SELCLOUD: a hybrid multi-criteria decision-making model for selection of cloud services. <i>Soft Computing</i> , 2019 , 23, 4701-4715	3.5	66
618	ROUTER: Fog enabled cloud based intelligent resource management approach for smart home IoT devices. <i>Journal of Systems and Software</i> , 2019 , 154, 125-138	3.3	65
617	A coordinator for scaling elastic applications across multiple clouds. <i>Future Generation Computer Systems</i> , 2012 , 28, 1350-1362	7.5	65
616	IoT Based Agriculture as a Cloud and Big Data Service. <i>Journal of Organizational and End User Computing</i> , 2017 , 29, 1-23	6.2	64

615	Reliable Provisioning of Spot Instances for Compute-intensive Applications 2012,		64
614	A taxonomy of market-based resource management systems for utility-driven cluster computing. <i>Software - Practice and Experience</i> , 2006 , 36, 1381-1419	2.5	64
613	Libra: a computational economy-based job scheduling system for clusters. <i>Software - Practice and Experience</i> , 2004 , 34, 573-590	2.5	64
612	Dynamic VM Placement Method for Minimizing Energy and Carbon Cost in Geographically Distributed Cloud Data Centers. <i>IEEE Transactions on Sustainable Computing</i> , 2017 , 2, 183-196	3.5	63
611	BlockSDN: Blockchain-as-a-Service for Software Defined Networking in Smart City Applications. <i>IEEE Network</i> , 2020 , 34, 83-91	11.4	63
610	QoS-aware cloud service composition using eagle strategy. <i>Future Generation Computer Systems</i> , 2019 , 90, 273-290	7.5	63
609	. IEEE Transactions on Cloud Computing, 2014 , 2, 1-13	3.3	63
608	Energy and Carbon-Efficient Placement of Virtual Machines in Distributed Cloud Data Centers. <i>Lecture Notes in Computer Science</i> , 2013 , 317-328	0.9	63
607	Deadline-constrained coevolutionary genetic algorithm for scientific workflow scheduling in cloud computing. <i>Concurrency Computation Practice and Experience</i> , 2017 , 29, e3942	1.4	63
606	MRPGA: An Extension of MapReduce for Parallelizing Genetic Algorithms 2008,		63
605	A Dynamic Critical Path Algorithm for Scheduling Scientific Workflow Applications on Global Grids 2007 ,		61
604	Network-centric performance analysis of runtime application migration in mobile cloud computing. <i>Simulation Modelling Practice and Theory</i> , 2015 , 50, 42-56	3.9	59
603	. IEEE Communications Surveys and Tutorials, 2008 , 10, 6-33	37.1	57
602	Mobile Cloud Business Process Management System for the Internet of Things. <i>ACM Computing Surveys</i> , 2017 , 49, 1-42	13.4	56
601	Dynamic Voltage and Frequency Scaling-aware dynamic consolidation of virtual machines for energy efficient cloud data centers. <i>Concurrency Computation Practice and Experience</i> , 2017 , 29, e4067	1.4	56
600	Managing Peak Loads by Leasing Cloud Infrastructure Services from a Spot Market 2010 ,		56
599	A Framework and Algorithm for Energy Efficient Container Consolidation in Cloud Data Centers 2015 ,		55
598	On incorporating differentiated levels of network service into GridSim. <i>Future Generation Computer Systems</i> , 2007 , 23, 606-615	7.5	55

597	InterGrid: a case for internetworking islands of Grids. <i>Concurrency Computation Practice and Experience</i> , 2008 , 20, 997-1024	1.4	55
596	Energy-aware virtual machine allocation for cloud with resource reservation. <i>Journal of Systems and Software</i> , 2019 , 147, 147-161	3.3	55
595	An Evaluation of Economy-based Resource Trading and Scheduling on Computational Power Grids for Parameter Sweep Applications. <i>Kluwer International Series in Engineering and Computer Science</i> , 2000 , 221-230		54
594	Application-aware cloudlet selection for computation offloading in multi-cloudlet environment. Journal of Supercomputing, 2017 , 73, 1672-1690	2.5	53
593	An Effective Architecture for Automated Appliance Management System Applying Ontology-Based Cloud Discovery 2010 ,		53
592	. IEEE Internet Computing, 2009 , 13, 24-33	2.4	53
591	SLA-Aware and Energy-Efficient Dynamic Overbooking in SDN-Based Cloud Data Centers. <i>IEEE Transactions on Sustainable Computing</i> , 2017 , 2, 76-89	3.5	52
590	Workload modeling for resource usage analysis and simulation in cloud computing. <i>Computers and Electrical Engineering</i> , 2015 , 47, 69-81	4.3	52
589	HPC Cloud for Scientific and Business Applications. ACM Computing Surveys, 2018, 51, 1-29	13.4	51
588	A Negotiation Mechanism for Advance Resource Reservations Using the Alternate Offers Protocol. <i>IEEE International Workshop on Quality of Service</i> , 2008 ,		51
587	CloudEyes: Cloud-based malware detection with reversible sketch for resource-constrained internet of things (IoT) devices. <i>Software - Practice and Experience</i> , 2017 , 47, 421-441	2.5	50
586	Application Management in Fog Computing Environments. ACM Computing Surveys, 2020, 53, 1-43	13.4	50
585	Internet of Things as a Service (iTaaS): Challenges and solutions for management of sensor data on the cloud and the fog. <i>Internet of Things (Netherlands)</i> , 2018 , 3-4, 156-174	6.9	50
584	Renewable-aware geographical load balancing of web applications for sustainable data centers. Journal of Network and Computer Applications, 2017, 83, 155-168	7.9	49
583	Budget-Driven Scheduling of Scientific Workflows in IaaS Clouds with Fine-Grained Billing Periods. <i>ACM Transactions on Autonomous and Adaptive Systems</i> , 2017 , 12, 1-22	1.2	49
582	SLA-Based Resource Provisioning for Heterogeneous Workloads in a Virtualized Cloud Datacenter. <i>Lecture Notes in Computer Science</i> , 2011 , 371-384	0.9	49
581	Pricing for Utility-Driven Resource Management and Allocation in Clusters. <i>International Journal of High Performance Computing Applications</i> , 2007 , 21, 405-418	1.8	49

(2020-2016)

579	A reliable and cost-efficient auto-scaling system for web applications using heterogeneous spot instances. <i>Journal of Network and Computer Applications</i> , 2016 , 65, 167-180	7.9	49	
578	EMUSIM: an integrated emulation and simulation environment for modeling, evaluation, and validation of performance of Cloud computing applications. <i>Software - Practice and Experience</i> , 2013 , 43, 595-612	2.5	48	
577	Scaling MapReduce Applications Across Hybrid Clouds to Meet Soft Deadlines 2013,		47	
576	Mobi-IoST: Mobility-Aware Cloud-Fog-Edge-IoT Collaborative Framework for Time-Critical Applications. <i>IEEE Transactions on Network Science and Engineering</i> , 2020 , 7, 2271-2285	4.9	47	
575	. IEEE Transactions on Cloud Computing, 2021 , 9, 14-26	3.3	47	
574	Scheduling dynamic workloads in multi-tenant scientific workflow as a service platforms. <i>Future Generation Computer Systems</i> , 2018 , 79, 739-750	7.5	46	
573	Resource provisioning for data-intensive applications with deadline constraints on hybrid clouds using Aneka. <i>Future Generation Computer Systems</i> , 2018 , 79, 765-775	7.5	46	
57 ²	The Next Grand Challenges: Integrating the Internet of Things and Data Science. <i>IEEE Cloud Computing</i> , 2018 , 5, 12-26		46	
571	Attribute-based data access control in mobile cloud computing: Taxonomy and open issues. <i>Future Generation Computer Systems</i> , 2017 , 72, 273-287	7.5	46	
570	Autonomic Cloud computing: Open challenges and architectural elements 2012,		46	
569	A Taxonomy of Software-Defined Networking (SDN)-Enabled Cloud Computing. <i>ACM Computing Surveys</i> , 2018 , 51, 1-36	13.4	45	
568	Augmentation Techniques for Mobile Cloud Computing. ACM Computing Surveys, 2018, 51, 1-38	13.4	44	
567	Aneka: Next-Generation Enterprise Grid Platform for e-Science and e-Business Applications 2007,		44	
566	Cloud Log Forensics. ACM Computing Surveys, 2016 , 49, 1-42	13.4	44	
565	BULLET: Particle Swarm Optimization Based Scheduling Technique for Provisioned Cloud Resources. <i>Journal of Network and Systems Management</i> , 2018 , 26, 361-400	2.1	44	
564	CloudSimSDN: Modeling and Simulation of Software-Defined Cloud Data Centers 2015,		43	
563	Economic models for management of resources in peer-to-peer and grid computing 2001 , 4528, 13		43	
562	Profit-aware application placement for integrated Foglaloud computing environments. <i>Journal of Parallel and Distributed Computing</i> , 2020 , 135, 177-190	4.4	43	

561	Cost-Efficient and Robust On-Demand Video Transcoding Using Heterogeneous Cloud Services. IEEE Transactions on Parallel and Distributed Systems, 2018, 29, 556-571	3.7	42
560	Using Proactive Fault-Tolerance Approach to Enhance Cloud Service Reliability. <i>IEEE Transactions on Cloud Computing</i> , 2018 , 6, 1191-1202	3.3	42
559	An Autonomous Reliability-Aware Negotiation Strategy for Cloud Computing Environments 2012,		42
558	A Taxonomy and Future Directions for Sustainable Cloud Computing. <i>ACM Computing Surveys</i> , 2019 , 51, 1-33	13.4	42
557	STAR: SLA-aware Autonomic Management of Cloud Resources. <i>IEEE Transactions on Cloud Computing</i> , 2020 , 8, 1040-1053	3.3	42
556	Multi-Cloud Provisioning and Load Distribution for Three-Tier Applications. <i>ACM Transactions on Autonomous and Adaptive Systems</i> , 2014 , 9, 1-21	1.2	41
555	Special section: Federated resource management in grid and cloud computing systems. <i>Future Generation Computer Systems</i> , 2010 , 26, 1189-1191	7.5	41
554	CHOPPER: an intelligent QoS-aware autonomic resource management approach for cloud computing. <i>Cluster Computing</i> , 2018 , 21, 1203-1241	2.1	41
553	Content Delivery Networks: State of the Art, Insights, and Imperatives. <i>Lecture Notes in Electrical Engineering</i> , 2008 , 3-32	0.2	40
552	Service Level Agreement based Allocation of Cluster Resources: Handling Penalty to Enhance Utility 2005 ,		40
551	Enhancing Reliability of Workflow Execution Using Task Replication and Spot Instances. <i>ACM Transactions on Autonomous and Adaptive Systems</i> , 2016 , 10, 1-21	1.2	40
550	Mandi: a market exchange for trading utility and cloud computing services. <i>Journal of Supercomputing</i> , 2013 , 64, 1153-1174	2.5	39
549	Data Storage Management in Cloud Environments. ACM Computing Surveys, 2018, 50, 1-51	13.4	39
548	An Online Algorithm for Task Offloading in Heterogeneous Mobile Clouds. <i>ACM Transactions on Internet Technology</i> , 2018 , 18, 1-25	3.8	38
547	Energy-Efficient Scheduling of Urgent Bag-of-Tasks Applications in Clouds through DVFS 2014 ,		38
546	Single System Image. International Journal of High Performance Computing Applications, 2001, 15, 124-1	3<u>6</u>8	38
545	A Taxonomy of CDNs. Lecture Notes in Electrical Engineering, 2008, 33-77	0.2	38
544	Green Cloud Framework for Improving Carbon Efficiency of Clouds. <i>Lecture Notes in Computer Science</i> , 2011 , 491-502	0.9	38

543	SOCCER: Self-Optimization of Energy-efficient Cloud Resources. Cluster Computing, 2016, 19, 1787-18	002.1	38
542	Holistic resource management for sustainable and reliable cloud computing: An innovative solution to global challenge. <i>Journal of Systems and Software</i> , 2019 , 155, 104-129	3.3	37
54 ¹	Revenue Maximization with Optimal Capacity Control in Infrastructure as a Service Cloud Markets. <i>IEEE Transactions on Cloud Computing</i> , 2015 , 3, 261-274	3.3	37
540	2006,		37
539	Resource Provisioning Based Scheduling Framework for Execution of Heterogeneous and Clustered Workloads in Clouds: from Fundamental to Autonomic Offering. <i>Journal of Grid Computing</i> , 2019 , 17, 385-417	4.2	37
538	CometCloud: An Autonomic Cloud Engine 2011 , 275-297		36
537	Adapting Market-Oriented Scheduling Policies for Cloud Computing. <i>Lecture Notes in Computer Science</i> , 2010 , 351-362	0.9	36
536	Cost Optimization for Dynamic Replication and Migration of Data in Cloud Data Centers. <i>IEEE Transactions on Cloud Computing</i> , 2019 , 7, 705-718	3.3	36
535	An Auction Mechanism for Cloud Spot Markets. <i>ACM Transactions on Autonomous and Adaptive Systems</i> , 2016 , 11, 1-33	1.2	35
534	An SCP-based heuristic approach for scheduling distributed data-intensive applications on global grids. <i>Journal of Parallel and Distributed Computing</i> , 2008 , 68, 471-487	4.4	35
533	Dynamic Scheduling for Stochastic Edge-Cloud Computing Environments using A3C learning and Residual Recurrent Neural Networks. <i>IEEE Transactions on Mobile Computing</i> , 2020 , 1-1	4.6	35
532	QoS-aware Big service composition using MapReduce based evolutionary algorithm with guided mutation. <i>Future Generation Computer Systems</i> , 2018 , 86, 1008-1018	7.5	34
531	. IEEE Cloud Computing, 2016 , 3, 58-64		34
530	Software-Defined Cloud Computing: Architectural elements and open challenges 2014,		34
529	Cloud-SEnergy: A bin-packing based multi-cloud service broker for energy efficient composition and execution of data-intensive applications. <i>Sustainable Computing: Informatics and Systems</i> , 2018 , 19, 242-252	3	33
528	Dynamic resource demand prediction and allocation in multi-tenant service clouds. <i>Concurrency Computation Practice and Experience</i> , 2016 , 28, 4429-4442	1.4	33
527	Container-based cluster orchestration systems: A taxonomy and future directions. <i>Software - Practice and Experience</i> , 2019 , 49, 698-719	2.5	33
526	A dependency-aware ontology-based approach for deploying service level agreement monitoring services in Cloud. <i>Software - Practice and Experience</i> , 2012 , 42, 501-518	2.5	32

525	Workflow Engine for Clouds 2011 , 321-344		32
524	Green Cloud Computing and Environmental Sustainability 2012 , 315-339		32
523	Managing Cancellations and No-Shows of Reservations with Overbooking to Increase Resource Revenue 2008 ,		32
522	A Hybrid Bio-Inspired Algorithm for Scheduling and Resource Management in Cloud Environment. <i>IEEE Transactions on Services Computing</i> , 2020 , 13, 3-15	4.8	32
521	Utilization-prediction-aware virtual machine consolidation approach for energy-efficient cloud data centers. <i>Journal of Parallel and Distributed Computing</i> , 2020 , 139, 99-109	4.4	31
520	A taxonomy and survey on autonomic management of applications in grid computing environments. <i>Concurrency Computation Practice and Experience</i> , 2011 , 23, 1990-2019	1.4	31
519	Context-Aware Placement of Industry 4.0 Applications in Fog Computing Environments. <i>IEEE Transactions on Industrial Informatics</i> , 2020 , 16, 7004-7013	11.9	31
518	Self managed virtual machine scheduling in Cloud systems. <i>Information Sciences</i> , 2018 , 433-434, 381-400	0 _{7.7}	30
517	Performance analysis of allocation policies for interGrid resource provisioning. <i>Information and Software Technology</i> , 2009 , 51, 42-55	3.4	30
516	Cooperative and decentralized workflow scheduling in global grids. <i>Future Generation Computer Systems</i> , 2010 , 26, 753-768	7.5	30
516 515		7.5	30 29
	Systems, 2010, 26, 753-768 Revenue Maximization Using Adaptive Resource Provisioning in Cloud Computing Environments	7·5 2·5	
515	Systems, 2010, 26, 753-768 Revenue Maximization Using Adaptive Resource Provisioning in Cloud Computing Environments 2012, A Market-Oriented Grid Directory Service for Publication and Discovery of Grid Service Providers		29
515 514	Revenue Maximization Using Adaptive Resource Provisioning in Cloud Computing Environments 2012, A Market-Oriented Grid Directory Service for Publication and Discovery of Grid Service Providers and their Services. <i>Journal of Supercomputing</i> , 2006, 36, 17-31	2.5	29
515 514 513	Revenue Maximization Using Adaptive Resource Provisioning in Cloud Computing Environments 2012, A Market-Oriented Grid Directory Service for Publication and Discovery of Grid Service Providers and their Services. <i>Journal of Supercomputing</i> , 2006, 36, 17-31 Internet of Things (IoT) and New Computing Paradigms 2019, 1-23	2.5	29 29 29
515514513512	Revenue Maximization Using Adaptive Resource Provisioning in Cloud Computing Environments 2012, A Market-Oriented Grid Directory Service for Publication and Discovery of Grid Service Providers and their Services. <i>Journal of Supercomputing</i> , 2006, 36, 17-31 Internet of Things (IoT) and New Computing Paradigms 2019, 1-23 Modeling and Simulation of Fog and Edge Computing Environments Using iFogSim Toolkit 2019, 433-46. QoS-aware secure transaction framework for internet of things using blockchain mechanism.	2.5	29 29 29
515514513512511	Revenue Maximization Using Adaptive Resource Provisioning in Cloud Computing Environments 2012, A Market-Oriented Grid Directory Service for Publication and Discovery of Grid Service Providers and their Services. <i>Journal of Supercomputing</i> , 2006, 36, 17-31 Internet of Things (IoT) and New Computing Paradigms 2019, 1-23 Modeling and Simulation of Fog and Edge Computing Environments Using iFogSim Toolkit 2019, 433-46 QoS-aware secure transaction framework for internet of things using blockchain mechanism. <i>Journal of Network and Computer Applications</i> , 2019, 144, 59-78 E-eco: Performance-aware energy-efficient cloud data center orchestration. <i>Journal of Network and</i>	2.5 7·9	29 29 29 29 28

507	Data Replication Strategies in Wide-Area Distributed Systems 2007 , 211-241		28	
506	A Privacy-Preserving Mobile and Fog Computing Framework to Trace and Prevent COVID-19 Community Transmission. <i>IEEE Journal of Biomedical and Health Informatics</i> , 2020 , 24, 3564-3575	7.2	28	
505	Application-aware end-to-end delay and message loss estimation in Internet of Things (IoT) IMQTT-SN protocols. <i>Future Generation Computer Systems</i> , 2018 , 89, 300-316	7.5	28	
504	A Cloud Trust Evaluation System Using Hierarchical Fuzzy Inference System for Service Selection 2014 ,		27	
503	CycloidGrid: A proximity-aware P2P-based resource discovery architecture in volunteer computing systems. <i>Future Generation Computer Systems</i> , 2013 , 29, 1583-1595	7.5	27	
502	A linear programming-driven genetic algorithm for meta-scheduling on utility grids. <i>International Journal of Parallel, Emergent and Distributed Systems</i> , 2011 , 26, 493-517	1	27	
501	Latency-aware Virtualized Network Function provisioning for distributed edge clouds. <i>Journal of Systems and Software</i> , 2019 , 152, 24-31	3.3	26	
500	SLA-Based Resource Scheduling for Big Data Analytics as a Service in Cloud Computing Environments 2015 ,		26	
499	Introduction to the IEEE Transactions on Cloud Computing. <i>IEEE Transactions on Cloud Computing</i> , 2013 , 1, 3-21	3.3	26	
498	Software-Defined Network (SDN) Data Plane Security: Issues, Solutions, and Future Directions 2020 , 341-387		26	
497	An algorithm for network and data-aware placement of multi-tier applications in cloud data centers. <i>Journal of Network and Computer Applications</i> , 2017 , 98, 65-83	7.9	25	
496	Dynamic Virtual Machine Consolidation Algorithms for Energy-Efficient Cloud Resource Management: A Review 2018 , 135-165		25	
495	SLA-Aware Provisioning and Scheduling of Cloud Resources for Big Data Analytics 2014,		25	
494	Minimizing Execution Costs when Using Globally Distributed Cloud Services 2010,		25	
493	A Case for Peering of Content Delivery Networks. <i>IEEE Distributed Systems Online</i> , 2006 , 7, 3-3		25	
492	Network-Aware Virtual Machine Placement and Migration in Cloud Data Centers. <i>Advances in Systems Analysis, Software Engineering, and High Performance Computing Book Series</i> , 2015 , 42-91	0.4	25	
491	Maximum revenue-oriented resource allocation in cloud. <i>International Journal of Grid and Utility Computing</i> , 2016 , 7, 12	1.1	24	
490	Virtual Machine Customization and Task Mapping Architecture for Efficient Allocation of Cloud Data Center Resources. <i>Computer Journal</i> , 2016 , 59, 208-224	1.3	24	

489	Metropolitan intelligent surveillance systems for urban areas by harnessing IoT and edge computing paradigms. <i>Software - Practice and Experience</i> , 2018 , 48, 1475-1492	2.5	24
488	Energy-traffic tradeoff cooperative offloading for mobile cloud computing 2014,		24
487	Best Practices in Architecting Cloud Applications in the AWS Cloud 2011 , 457-490		24
486	2006,		24
485	SLA-Based Advance Reservations with Flexible and Adaptive Time QoS Parameters. <i>Lecture Notes in Computer Science</i> , 2007 , 119-131	0.9	24
484	Energy Efficient Scheduling of Cloud Application Components with Brownout. <i>IEEE Transactions on Sustainable Computing</i> , 2016 , 1, 40-53	3.5	24
483	ElasticSFC: Auto-scaling techniques for elastic service function chaining in network functions virtualization-based clouds. <i>Journal of Systems and Software</i> , 2019 , 152, 108-119	3.3	24
482	Internet of Health Things (IoHT) for personalized health care using integrated edge-fog-cloud network. <i>Journal of Ambient Intelligence and Humanized Computing</i> , 2021 , 12, 943-959	3.7	24
481	An Autonomous Time-Dependent SLA Negotiation Strategy for Cloud Computing. <i>Computer Journal</i> , 2015 , 58, 3202-3216	1.3	23
480	Efficient Virtual Machine Sizing for Hosting Containers as a Service (SERVICES 2015) 2015 ,		23
479	A novel energy-aware resource management technique using joint VM and container consolidation approach for green computing in cloud data centers. <i>Simulation Modelling Practice and Theory</i> , 2020 , 104, 102127	3.9	23
478	To move or not to move: Cost optimization in a dual cloud-based storage architecture. <i>Journal of Network and Computer Applications</i> , 2016 , 75, 223-235	7.9	23
477	A Heuristic for Mapping Virtual Machines and Links in Emulation Testbeds 2009,		23
476	Brownout Approach for Adaptive Management of Resources and Applications in Cloud Computing Systems. <i>ACM Computing Surveys</i> , 2019 , 52, 1-27	13.4	22
475	ETAS: Energy and thermal-aware dynamic virtual machine consolidation in cloud data center with proactive hotspot mitigation. <i>Concurrency Computation Practice and Experience</i> , 2019 , 31, e5221	1.4	22
474	Data Allocation Mechanism for Internet-of-Things Systems With Blockchain. <i>IEEE Internet of Things Journal</i> , 2020 , 7, 3509-3522	10.7	22
473	Priority-Aware VM Allocation and Network Bandwidth Provisioning in Software-Defined Networking (SDN)-Enabled Clouds. <i>IEEE Transactions on Sustainable Computing</i> , 2019 , 4, 17-28	3.5	22
472	Integrated Risk Analysis for a Commercial Computing Service 2007,		22

471	Decentralized Overlay for Federation of Enterprise Clouds 2010 , 191-217		22	
470	Optimal Fitness Aware Cloud Service Composition using an Adaptive Genotypes Evolution based Genetic Algorithm. <i>Future Generation Computer Systems</i> , 2019 , 94, 185-198	7.5	22	
469	Combating DDoS Attacks in the Cloud: Requirements, Trends, and Future Directions. <i>IEEE Cloud Computing</i> , 2017 , 4, 22-32		21	
468	An energy and performance aware consolidation technique for containerized datacenters. <i>IEEE Transactions on Cloud Computing</i> , 2019 , 1-1	3.3	21	
467	. IEEE Access, 2020 , 8, 70375-70386	3.5	21	
466	C2OF2N: a low power cooperative code offloading method for femtolet-based fog network. <i>Journal of Supercomputing</i> , 2018 , 74, 2412-2448	2.5	21	
465	Monitoring of cloud computing environments 2016,		21	
464	Brokering Algorithms for Optimizing the Availability and Cost of Cloud Storage Services 2013,		21	
463	CloudPick: a framework for QoS-aware and ontology-based service deployment across clouds. <i>Software - Practice and Experience</i> , 2015 , 45, 197-231	2.5	21	
462	Cluster computing: the commodity supercomputer. <i>Software - Practice and Experience</i> , 1999 , 29, 551-576	2.5	21	
461	Quantum computing: A taxonomy, systematic review and future directions. <i>Software - Practice and Experience</i> ,	2.5	21	
460	Failure Management for Reliable Cloud Computing: A Taxonomy, Model, and Future Directions. Computing in Science and Engineering, 2020 , 22, 52-63	1.5	21	
459	Rethinking elastic online scheduling of big data streaming applications over high-velocity continuous data streams. <i>Journal of Supercomputing</i> , 2018 , 74, 615-636	2.5	21	
458	Architectural Models for Resource Management in the Grid. <i>Lecture Notes in Computer Science</i> , 2000 , 18-35	0.9	21	
457	A Trust-Based Agent Learning Model for Service Composition in Mobile Cloud Computing Environments. <i>IEEE Access</i> , 2019 , 7, 34207-34226	3.5	20	
456	A data-centric framework for development and deployment of Internet of Things applications in clouds 2015 ,		20	
455	On minimizing total energy consumption in the scheduling of virtual machine reservations. <i>Journal of Network and Computer Applications</i> , 2018 , 113, 64-74	7.9	20	

453	CVSS: A Cost-Efficient and QoS-Aware Video Streaming Using Cloud Services 2016,		20
452	RADAR: Self-configuring and self-healing in resource management for enhancing quality of cloud services. <i>Concurrency Computation Practice and Experience</i> , 2019 , 31, e4834	1.4	20
451	Task granularity policies for deploying bag-of-task applications on global grids. <i>Future Generation Computer Systems</i> , 2013 , 29, 170-181	7.5	20
450	A Decentralized and Cooperative Workflow Scheduling Algorithm 2008,		20
449	PARMON: a portable and scalable monitoring system for clusters. <i>Software - Practice and Experience</i> , 2000 , 30, 723-739	2.5	20
448	Cloud Pricing Models. ACM Computing Surveys, 2020 , 52, 1-36	13.4	20
447	EdgeLens: Deep Learning based Object Detection in Integrated IoT, Fog and Cloud Computing Environments 2019 ,		20
446	An adaptive multi-objective evolutionary algorithm for constrained workflow scheduling in Clouds. <i>Distributed and Parallel Databases</i> , 2018 , 36, 339-368	0.9	20
445	On the effectiveness of isolation-based anomaly detection in cloud data centers. <i>Concurrency Computation Practice and Experience</i> , 2017 , 29, e4169	1.4	19
444	Simurgh: A framework for effective discovery, programming, and integration of services exposed in loT 2015 ,		19
443	Cost-efficient dynamic scheduling of big data applications in apache spark on cloud. <i>Journal of Systems and Software</i> , 2020 , 162, 110515	3.3	19
442	. IEEE Transactions on Services Computing, 2018 , 11, 5-19	4.8	19
441	An economic replica placement mechanism for streaming content distribution in Hybrid CDN-P2P networks. <i>Computer Communications</i> , 2014 , 52, 60-70	5.1	19
440	Location-aware brokering for consumers in multi-cloud computing environments. <i>Journal of Network and Computer Applications</i> , 2017 , 95, 79-93	7.9	19
439	Service resizing for quick DDoS mitigation in cloud computing environment. <i>Annales Des Telecommunications/Annals of Telecommunications</i> , 2017 , 72, 237-252	2	19
438	2009,		19
437	Service and Utility Oriented Distributed Computing Systems: Challenges and Opportunities for Modeling and Simulation Communities. <i>Simulation Symposium, Proceedings of the Annual</i> , 2008 ,		19
436	Aneka Cloud Application Platform and Its Integration with Windows Azure 2011 , 645-679		19

435	iBrownout: An Integrated Approach for Managing Energy and Brownout in Container-Based Clouds. <i>IEEE Transactions on Sustainable Computing</i> , 2019 , 4, 53-66	3.5	19
434	. IEEE Transactions on Services Computing, 2019 , 12, 319-334	4.8	19
433	Managing renewable energy and carbon footprint in multi-cloud computing environments. <i>Journal of Parallel and Distributed Computing</i> , 2020 , 135, 191-202	4.4	19
432	BrownoutCon: A software system based on brownout and containers for energy-efficient cloud computing. <i>Journal of Systems and Software</i> , 2019 , 155, 91-103	3.3	18
431	Financial Option Market Model for Federated Cloud Environments 2012,		18
430	The MapReduce Programming Model and Implementations 2011 , 373-390		18
429	Advanced QoS methods for Grid workflows based on meta-negotiations and SLA-mappings 2008,		18
428	A case for cooperative and incentive-based federation of distributed clusters. <i>Future Generation Computer Systems</i> , 2008 , 24, 280-295	7.5	18
427	Using Revenue Management to Determine Pricing of Reservations 2007,		18
426	Microservices-based IoT Application Placement within Heterogeneous and Resource Constrained Fog Computing Environments 2019 ,		18
425	A Cost-Efficient Container Orchestration Strategy in Kubernetes-Based Cloud Computing Infrastructures with Heterogeneous Resources. <i>ACM Transactions on Internet Technology</i> , 2020 , 20, 1-24	₁ 3.8	18
424	HScheduler: an optimal approach to minimize the makespan of multiple MapReduce jobs. <i>Journal of Supercomputing</i> , 2016 , 72, 2376-2393	2.5	18
423	ThermoSim: Deep learning based framework for modeling and simulation of thermal-aware resource management for cloud computing environments. <i>Journal of Systems and Software</i> , 2020 , 166, 110596	3.3	18
422	Emergent Failures: Rethinking Cloud Reliability at Scale. IEEE Cloud Computing, 2018, 5, 12-21		18
421	Online virtual machine migration for renewable energy usage maximization in geographically distributed cloud data tenters. <i>Concurrency Computation Practice and Experience</i> , 2017 , 29, e4125	1.4	17
420	Software Rejuvenation Based Fault Tolerance Scheme for Cloud Applications 2015,		17
419	. IEEE Transactions on Services Computing, 2020 , 1-1	4.8	17
418	dSpark: Deadline-Based Resource Allocation for Big Data Applications in Apache Spark 2017 ,		17

417	Double auction-inspired meta-scheduling of parallel applications on global grids. <i>Journal of Parallel and Distributed Computing</i> , 2013 , 73, 450-464	4.4	17
416	Model-based simulation and performance evaluation of grid scheduling strategies. <i>Future Generation Computer Systems</i> , 2009 , 25, 460-465	7.5	17
415	A Sensor Web Middleware with Stateful Services for Heterogeneous Sensor Networks 2007,		17
414	Neuroscience instrumentation and distributed analysis of brain activity data: a case for eScience on global Grids. <i>Concurrency Computation Practice and Experience</i> , 2005 , 17, 1783-1798	1.4	17
413	Multiple Workflows Scheduling in Multi-tenant Distributed Systems. <i>ACM Computing Surveys</i> , 2020 , 53, 1-39	13.4	17
412	Provisioning Spot Market Cloud Resources to Create Cost-Effective Virtual Clusters. <i>Lecture Notes in Computer Science</i> , 2011 , 395-408	0.9	17
411	Agri-Info: Cloud Based Autonomic System for Delivering Agriculture as a Service. <i>Internet of Things</i> (Netherlands), 2020 , 9, 100131	6.9	17
410	An Efficient Multi-Cloud Service Composition Using a Distributed Multiagent-Based, Memory-Driven Approach. <i>IEEE Transactions on Sustainable Computing</i> , 2019 , 1-1	3.5	17
409	Self directed learning based workload forecasting model for cloud resource management. <i>Information Sciences</i> , 2021 , 543, 345-366	7.7	17
408	A Deadline-Constrained Multi-Objective Task Scheduling Algorithm in Mobile Cloud Environments. <i>IEEE Access</i> , 2018 , 6, 52982-52996	3.5	17
407	Clabacus: A Risk-Adjusted Cloud Resources Pricing Model Using Financial Option Theory. <i>IEEE Transactions on Cloud Computing</i> , 2015 , 3, 332-344	3.3	16
406	Performance Prediction for HPC on Clouds 2011 , 437-456		16
405	GarQ: An efficient scheduling data structure for advance reservations of grid resources. <i>International Journal of Parallel, Emergent and Distributed Systems</i> , 2009 , 24, 1-19	1	16
404	Resource discovery and request-redirection for dynamic load sharing in multi-provider peering content delivery networks. <i>Journal of Network and Computer Applications</i> , 2009 , 32, 976-990	7.9	16
403	Preemption-Aware Energy Management in Virtualized Data Centers 2012,		16
402	MapReduce Programming Model for .NET-Based Cloud Computing. <i>Lecture Notes in Computer Science</i> , 2009 , 417-428	0.9	16
401	RCT: A distributed tree for supporting efficient range and multi-attribute queries in grid computing. <i>Future Generation Computer Systems</i> , 2008 , 24, 631-643	7.5	16
400	A Fuzzy Logic-Based Controller for Cost and Energy Efficient Load Balancing in Geo-distributed Data Centers 2015 ,		16

(2015-2020)

399	Resource Management and Scheduling in Distributed Stream Processing Systems. <i>ACM Computing Surveys</i> , 2020 , 53, 1-41	13.4	16	
398	Hedonic Pricing of Cloud Computing Services. <i>IEEE Transactions on Cloud Computing</i> , 2021 , 9, 182-196	3.3	16	
397	Utility Computing on Global Grids110-130		16	
396	MELODY-JOIN: Efficient Earth Mover's Distance similarity joins using MapReduce 2014 ,		15	
395	A Responsive Knapsack-Based Algorithm for Resource Provisioning and Scheduling of Scientific Workflows in Clouds 2015 ,		15	
394	QoS-aware Deployment of Network of Virtual Appliances Across Multiple Clouds 2011 ,		15	
393	Understanding Scientific Applications for Cloud Environments 2011 , 345-371		15	
392	Ontology-based Grid resource management. <i>Software - Practice and Experience</i> , 2009 , 39, 1419-1438	2.5	15	
391	AN EVALUATION OF COMMUNICATION DEMAND OF AUCTION PROTOCOLS IN GRID ENVIRONMENTS 2006 ,		15	
390	Maximizing Utility for Content Delivery Clouds. Lecture Notes in Computer Science, 2009, 13-28	0.9	15	
389	A collaborative filtering recommendation method based on discrete quantum-inspired shuffled frog leaping algorithms in social networks. <i>Future Generation Computer Systems</i> , 2018 , 88, 262-270	7.5	15	
388	An auction-based incentive mechanism for heterogeneous mobile clouds. <i>Journal of Systems and Software</i> , 2019 , 152, 151-164	3.3	14	
387	QoS-aware service provisioning in fog computing. <i>Journal of Network and Computer Applications</i> , 2020 , 165, 102674	7.9	14	
386	SDCon: Integrated Control Platform for Software-Defined Clouds. <i>IEEE Transactions on Parallel and Distributed Systems</i> , 2019 , 30, 230-244	3.7	14	
385	Enhancing performance of failure-prone clusters by adaptive provisioning of cloud resources. <i>Journal of Supercomputing</i> , 2013 , 63, 467-489	2.5	14	
384	2015,		14	
383	Multi-cloud resource provisioning with Aneka: A unified and integrated utilisation of microsoft azure and amazon EC2 instances 2015 ,		14	
382	Big Data Analytics-Enhanced Cloud Computing: Challenges, Architectural Elements, and Future Directions 2015 ,		14	

381	A Case for Cooperative and Incentive-Based Coupling of Distributed Clusters 2005,		14
380	Semantic-based Grid Resource Discovery and its Integration with the Grid Service Broker 2006 ,		14
379	MARIO: A spatio-temporal data mining framework on Google Cloud to explore mobility dynamics from taxi trajectories. <i>Journal of Network and Computer Applications</i> , 2020 , 164, 102692	7.9	14
378	Energy Efficient Algorithms based on VM Consolidation for Cloud Computing: Comparisons and Evaluations 2020 ,		14
377	Performance-Oriented Deployment of Streaming Applications on Cloud. <i>IEEE Transactions on Big Data</i> , 2019 , 5, 46-59	3.2	14
376	Cluster Computing: High-Performance, High-Availability, and High-Throughput Processing on a Network of Computers 2006 , 521-551		14
375	Performance evaluation of live virtual machine migration in SDN-enabled cloud data centers. Journal of Parallel and Distributed Computing, 2019 , 131, 55-68	4.4	13
374	QoS and preemption aware scheduling in federated and virtualized Grid computing environments. <i>Journal of Parallel and Distributed Computing</i> , 2012 , 72, 231-245	4.4	13
373	An economic mechanism for request routing and resource allocation in hybrid CDN B 2P networks. <i>International Journal of Network Management</i> , 2015 , 25, 375-393	1.8	13
372	Semantic-enabled CARE Resource Broker (SeCRB) for managing grid and cloud environment. <i>Journal of Supercomputing</i> , 2014 , 68, 509-556	2.5	13
371	Reputation-based dependable scheduling of workflow applications in Peer-to-Peer Grids. <i>Computer Networks</i> , 2010 , 54, 3341-3359	5.4	13
370	Decentralised Resource Discovery Service for Large Scale Federated Grids 2007,		13
369	Extending GridSim with an architecture for failure detection 2007,		13
368	2006,		13
367	Peer-to-Peer Grid Computing and a .NET-Based Alchemi Framework 2006 , 403-429		13
366	A Context-Aware Fog Enabled Scheme for Real-Time Cross-Vertical IoT Applications. <i>IEEE Internet of Things Journal</i> , 2019 , 6, 2400-2412	10.7	13
365	Fog-Based Smart Healthcare as a Big Data and Cloud Service for Heart Patients Using IoT. <i>Lecture Notes on Data Engineering and Communications Technologies</i> , 2019 , 1376-1383	0.4	13
364	ACAS: An anomaly-based cause aware auto-scaling framework for clouds. <i>Journal of Parallel and Distributed Computing</i> , 2019 , 126, 107-120	4.4	13

363	Predictive Analysis to Support Fog Application Deployment 2019 , 191-221	13
362	Heterogeneous Job Allocation Scheduler for Hadoop MapReduce Using Dynamic Grouping Integrated Neighboring Search. <i>IEEE Transactions on Cloud Computing</i> , 2020 , 8, 193-206	13
361	GRVMP: A Greedy Randomized Algorithm for Virtual Machine Placement in Cloud Data Centers. <i>IEEE Systems Journal</i> , 2021 , 15, 2571-2582 4-3	13
360	A Volunteer-Supported Fog Computing Environment for Delay-Sensitive IoT Applications. <i>IEEE</i> Internet of Things Journal, 2021 , 8, 3822-3830	13
359	Task Runtime Prediction in Scientific Workflows Using an Online Incremental Learning Approach 2018 ,	13
358	A Holistic Evaluation of Docker Containers for Interfering Microservices 2018,	13
357	IoT-F2N: An energy-efficient architectural model for IoT using Femtolet-based fog network. <i>Journal of Supercomputing</i> , 2019 , 75, 7125-7146	12
356	IoT-CANE: A unified knowledge management system for data-centric Internet of Things application systems. <i>Journal of Parallel and Distributed Computing</i> , 2019 , 131, 161-172	12
355	D-Storm: Dynamic Resource-Efficient Scheduling of Stream Processing Applications 2017,	12
354	Heads-Join: Efficient Earth Mover's Distance Similarity Joins on Hadoop. <i>IEEE Transactions on Parallel and Distributed Systems</i> , 2016 , 27, 1660-1673	12
353	Computational Offloading or Data Binding? Bridging the Cloud Infrastructure to the Proximity of the Mobile User 2014 ,	12
352	SLA-Based Scheduling of Bag-of-Tasks Applications on Power-Aware Cluster Systems. <i>IEICE</i> Transactions on Information and Systems, 2010 , E93.D, 3194-3201	12
351	Group-based adaptive result certification mechanism in Desktop Grids. <i>Future Generation Computer Systems</i> , 2010 , 26, 776-786	12
350	Jaccard Index based availability prediction in enterprise grids. <i>Procedia Computer Science</i> , 2010 , 1, 2707- 27 516	5 12
349	Designing a resource broker for heterogeneous grids. <i>Software - Practice and Experience</i> , 2008 , 38, 793-825	12
348	Edge Affinity-based Management of Applications in Fog Computing Environments 2019 ,	12
347	Load and Proximity Aware Request-Redirection for Dynamic Load Distribution in Peering CDNs. Lecture Notes in Computer Science, 2008 , 62-81	12
346	A Self-adaptive Approach for Managing Applications and Harnessing Renewable Energy for Sustainable Cloud Computing. <i>IEEE Transactions on Sustainable Computing</i> , 2020 , 1-1	12

345	Dynamic replication and migration of data objects with hot-spot and cold-spot statuses across storage data centers. <i>Journal of Parallel and Distributed Computing</i> , 2019 , 126, 121-133	4.4	12
344	Availability-Aware Virtual Cluster Allocation in Bandwidth-Constrained Datacenters. <i>IEEE Transactions on Services Computing</i> , 2020 , 13, 425-436	4.8	12
343	. IEEE Cloud Computing, 2018 , 5, 81-91		12
342	A Deadline and Budget Constrained Scheduling Algorithm for eScience Applications on Data Grids. <i>Lecture Notes in Computer Science</i> , 2005 , 60-72	0.9	12
341	Bio-Inspired Algorithms for Big Data Analytics: A Survey, Taxonomy, and Open Challenges 2019 , 1-17		11
340	Ensemble learning based predictive framework for virtual machine resource request prediction. <i>Neurocomputing</i> , 2020 , 397, 20-30	5.4	11
339	Novel Scheduling Algorithms for Efficient Deployment of MapReduce Applications in Heterogeneous Computing Environments. <i>IEEE Transactions on Cloud Computing</i> , 2018 , 6, 1080-1095	3.3	11
338	Detecting performance anomalies in scientific workflows using hierarchical temporal memory. <i>Future Generation Computer Systems</i> , 2018 , 88, 624-635	7.5	11
337	Resource provisioning based on preempting virtual machines in distributed systems. <i>Concurrency Computation Practice and Experience</i> , 2014 , 26, 412-433	1.4	11
336	Cloud Resource Provisioning to Extend the Capacity of Local Resources in the Presence of Failures 2012 ,		11
335	Coordinated rescheduling of Bag-of-Tasks for executions on multiple resource providers. <i>Concurrency Computation Practice and Experience</i> , 2012 , 24, 1362-1376	1.4	11
334	An Architecture for Federated Cloud Computing 2011 , 391-411		11
333	Reliability-Oriented Genetic Algorithm for Workflow Applications Using Max-Min Strategy 2009,		11
332	A Heuristic Approach for Capacity Control in Clouds 2009,		11
331	A Meta-scheduler with Auction Based Resource Allocation for Global Grids 2008,		11
330	A SLA-Oriented Management of Containers for Hosting Stateful Web Services 2007,		11
329	An architecture for virtual organization (VO)-based effective peering of content delivery networks 2007 ,		11
328	A Stepwise Auto-Profiling Method for Performance Optimization of Streaming Applications. <i>ACM Transactions on Autonomous and Adaptive Systems</i> , 2018 , 12, 1-33	1.2	11

(2021-2017)

327	A Survey and Taxonomy of Energy Efficient Resource Management Techniques in Platform as a Service Cloud. <i>Advances in Systems Analysis, Software Engineering, and High Performance Computing Book Series</i> , 2017 , 410-454	0.4	11
326	Service Level Agreement (SLA) in Utility Computing Systems. <i>Advances in Web Technologies and Engineering Book Series</i> , 2012 , 1-25	0.2	11
325	Thermal Prediction for Efficient Energy Management of Clouds Using Machine Learning. <i>IEEE Transactions on Parallel and Distributed Systems</i> , 2021 , 32, 1044-1056	3.7	11
324	Gaussian Distribution-Based Machine Learning Scheme for Anomaly Detection in Healthcare Sensor Cloud. <i>International Journal of Cloud Applications and Computing</i> , 2021 , 11, 52-72	3.1	11
323	Industrial Internet of Things (IIoT) Applications of Edge and Fog Computing: A Review and Future Directions. <i>Advances in Information Security</i> , 2021 , 293-325	0.7	11
322	Utility Functions, Prices, and Negotiation67-88		11
321	CloudNetSim++: A GUI Based Framework for Modeling and Simulation of Data Centers in OMNeT++. <i>IEEE Transactions on Services Computing</i> , 2017 , 10, 506-519	4.8	10
320	Mitigating impact of short-term overload on multi-cloud web applications through geographical load balancing. <i>Concurrency Computation Practice and Experience</i> , 2017 , 29, e4126	1.4	10
319	Improving Productivity in Design and Development of Information Technology (IT) Service Delivery Simulation Models. <i>Journal of Service Research</i> , 2015 , 18, 75-89	6	10
318	ARC: Anomaly-aware Robust Cloud-integrated IoT service composition based on uncertainty in advertised quality of service values. <i>Journal of Systems and Software</i> , 2020 , 164, 110557	3.3	10
317	A fog-driven dynamic resource allocation technique in ultra dense femtocell networks. <i>Journal of Network and Computer Applications</i> , 2019 , 145, 102407	7.9	10
316	CloudSimSDN-NFV: Modeling and simulation of network function virtualization and service function chaining in edge computing environments. <i>Software - Practice and Experience</i> , 2019 , 49, 1748-1	7 64	10
315	MSIGT: Most Significant Index Generation Technique for cloud environment 2015,		10
314	Coordinated load management in Peer-to-Peer coupled federated grid systems. <i>Journal of Supercomputing</i> , 2012 , 61, 292-316	2.5	10
313	Architecture and performance models for QoS-driven effective peering of content delivery networks. <i>Multiagent and Grid Systems</i> , 2009 , 5, 165-195	0.5	10
312	Energy Efficient Scheduling of Application Components via Brownout and Approximate Markov Decision Process. <i>Lecture Notes in Computer Science</i> , 2017 , 206-220	0.9	10
311	QuickDedup: Efficient VM deduplication in cloud computing environments. <i>Journal of Parallel and Distributed Computing</i> , 2020 , 139, 18-31	4.4	10
310	CGP: Cluster-based gossip protocol for dynamic resource environment in cloud. <i>Simulation Modelling Practice and Theory</i> , 2021 , 108, 102275	3.9	10

309	Uncertainty-aware Decisions in Cloud Computing. ACM Computing Surveys, 2021, 54, 1-30	13.4	10
308	OP-MLB: An Online VM Prediction based Multi-objective Load Balancing Framework for Resource Management at Cloud Datacenter. <i>IEEE Transactions on Cloud Computing</i> , 2021 , 1-1	3.3	10
307	A Fuzzy-Based Auto-scaler for Web Applications in Cloud Computing Environments. <i>Lecture Notes in Computer Science</i> , 2018 , 797-811	0.9	10
306	A scheduling-based dynamic fog computing framework for augmenting resource utilization. Simulation Modelling Practice and Theory, 2021 , 111, 102336	3.9	10
305	Workload-aware incremental repartitioning of shared-nothing distributed databases for scalable OLTP applications. <i>Future Generation Computer Systems</i> , 2016 , 56, 421-435	7.5	9
304	XHAMI Lextended HDFS and MapReduce interface for Big Data image processing applications in cloud computing environments. <i>Software - Practice and Experience</i> , 2017 , 47, 455-472	2.5	9
303	E-Storm: Replication-Based State Management in Distributed Stream Processing Systems 2017,		9
302	2014,		9
301	An environment for modeling and simulation of message-passing parallel applications for cloud computing. <i>Software - Practice and Experience</i> , 2013 , 43, 1359-1375	2.5	9
300	Legal Issues in Cloud Computing 2011 , 593-613		9
299	Use of run time predictions for automatic co-allocation of multi-cluster resources for iterative parallel applications. <i>Journal of Parallel and Distributed Computing</i> , 2011 , 71, 1388-1399	4.4	9
	Use of run time predictions for automatic co-allocation of multi-cluster resources for iterative	4.4	
299	Use of run time predictions for automatic co-allocation of multi-cluster resources for iterative parallel applications. <i>Journal of Parallel and Distributed Computing</i> , 2011 , 71, 1388-1399 Creating a Cloud Storage Mashup for High Performance, Low Cost Content Delivery. <i>Lecture Notes</i>		9
299 298	Use of run time predictions for automatic co-allocation of multi-cluster resources for iterative parallel applications. <i>Journal of Parallel and Distributed Computing</i> , 2011 , 71, 1388-1399 Creating a Cloud Storage Mashup for High Performance, Low Cost Content Delivery. <i>Lecture Notes in Computer Science</i> , 2009 , 178-183		9
299 298 297	Use of run time predictions for automatic co-allocation of multi-cluster resources for iterative parallel applications. <i>Journal of Parallel and Distributed Computing</i> , 2011 , 71, 1388-1399 Creating a Cloud Storage Mashup for High Performance, Low Cost Content Delivery. <i>Lecture Notes in Computer Science</i> , 2009 , 178-183 2008 , Performance Analysis of Multiple Site Resource Provisioning: Effects of the Precision of Availability	0.9	9 9
299 298 297 296	Use of run time predictions for automatic co-allocation of multi-cluster resources for iterative parallel applications. <i>Journal of Parallel and Distributed Computing</i> , 2011 , 71, 1388-1399 Creating a Cloud Storage Mashup for High Performance, Low Cost Content Delivery. <i>Lecture Notes in Computer Science</i> , 2009 , 178-183 2008 , Performance Analysis of Multiple Site Resource Provisioning: Effects of the Precision of Availability Information. <i>Lecture Notes in Computer Science</i> , 2008 , 157-168 On-Line Task Granularity Adaptation for Dynamic Grid Applications. <i>Lecture Notes in Computer</i>	0.9	9 9 9
299 298 297 296	Use of run time predictions for automatic co-allocation of multi-cluster resources for iterative parallel applications. <i>Journal of Parallel and Distributed Computing</i> , 2011 , 71, 1388-1399 Creating a Cloud Storage Mashup for High Performance, Low Cost Content Delivery. <i>Lecture Notes in Computer Science</i> , 2009 , 178-183 2008 , Performance Analysis of Multiple Site Resource Provisioning: Effects of the Precision of Availability Information. <i>Lecture Notes in Computer Science</i> , 2008 , 157-168 On-Line Task Granularity Adaptation for Dynamic Grid Applications. <i>Lecture Notes in Computer Science</i> , 2010 , 266-277 Spatio-Fog: A green and timeliness-oriented fog computing model for geospatial query resolution.	0.9	9 9 9 9

291	Fog Computing Realization for Big Data Analytics 2019 , 259-290		9
290	Management and Orchestration of Network Slices in 5G, Fog, Edge, and Clouds 2019 , 79-101		9
289	BFIM: Performance Measurement of a Blockchain Based Hierarchical Tree Layered Fog-IoT Microservice Architecture. <i>IEEE Access</i> , 2021 , 9, 106655-106674	3.5	9
288	TDRM: tensor-based data representation and mining for healthcare data in cloud computing environments. <i>Journal of Supercomputing</i> , 2018 , 74, 592-614	2.5	8
287	Index Generation and Secure Multi-user Access Control over an Encrypted Cloud Data. <i>Procedia Computer Science</i> , 2016 , 89, 293-300	1.6	8
286	A two phased service oriented Broker for replica selection in data grids. <i>Future Generation Computer Systems</i> , 2013 , 29, 953-972	7.5	8
285	A proximity-aware load balancing in peer-to-peer-based volunteer computing systems. <i>Journal of Supercomputing</i> , 2013 , 65, 797-822	2.5	8
284	IGSK: Index Generation on Split Keyword for search over cloud data 2015,		8
283	Outsourcing Resource-Intensive Tasks from Mobile Apps to Clouds: Android and Aneka Integration 2014 ,		8
282	Scheduling Workflow Applications Based on Multi-source Parallel Data Retrieval in Distributed Computing Networks. <i>Computer Journal</i> , 2012 , 55, 1288-1308	1.3	8
281	Migrating into a Cloud 2011 , 43-56		8
280	The Virtual Kidney: an eScience interface and Grid portal. <i>Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences</i> , 2009 , 367, 2141-59	3	8
279	Rescheduling co-allocation requests based on flexible advance reservations and processor remapping 2008 ,		8
278	A pareto following variation operator for fast-converging multiobjective evolutionary algorithms 2008 ,		8
277	A Linear Programming Driven Genetic Algorithm for Meta-Scheduling on Utility Grids 2008,		8
276	A Distributed Deep Reinforcement Learning Technique for Application Placement in Edge and Fog Computing Environments. <i>IEEE Transactions on Mobile Computing</i> , 2021 , 1-1	4.6	8
275	Service Level Agreement (SLA) in Utility Computing Systems 2012 , 286-310		8
274	Modeling cloud business customers[litility functions. <i>Future Generation Computer Systems</i> , 2020 , 105, 737-753	7.5	8

273	A Geospatial Orchestration Framework on Cloud for Processing User Queries 2016,		8
272	Quality of Service (QoS)-driven resource provisioning for large-scale graph processing in cloud computing environments: Graph Processing-as-a-Service (GPaaS). <i>Future Generation Computer Systems</i> , 2019 , 96, 490-501	7.5	8
271	Optimization Problems in Fog and Edge Computing 2019 , 103-121		8
270	ADRL: A Hybrid Anomaly-Aware Deep Reinforcement Learning-Based Resource Scaling in Clouds. <i>IEEE Transactions on Parallel and Distributed Systems</i> , 2021 , 32, 514-526	3.7	8
269	HeporCloud: An energy and performance efficient resource orchestrator for hybrid heterogeneous cloud computing environments. <i>Journal of Network and Computer Applications</i> , 2021 , 173, 102869	7.9	8
268	Performance-Aware Management of Cloud Resources. ACM Computing Surveys, 2019 , 52, 1-37	13.4	7
267	State and runtime-aware scheduling in elastic stream computing systems. <i>Future Generation Computer Systems</i> , 2019 , 97, 194-209	7.5	7
266	Shared data-aware dynamic resource provisioning and task scheduling for data intensive applications on hybrid clouds using Aneka. <i>Future Generation Computer Systems</i> , 2020 , 106, 595-606	7.5	7
265	Web Service Interaction Modeling and Verification Using Recursive Composition Algebra. <i>IEEE Transactions on Services Computing</i> , 2018 , 1-1	4.8	7
264	Software-Defined Multi-cloud Computing: A Vision, Architectural Elements, and Future Directions. <i>Lecture Notes in Computer Science</i> , 2018 , 3-18	0.9	7
263	A Taxonomy and Survey of Fault-Tolerant Workflow Management Systems in Cloud and Distributed Computing Environments 2017 , 285-320		7
262	Genetic Algorithm Based Data-Aware Group Scheduling for Big Data Clouds 2014 ,		7
261	An Iterative Optimization Framework for Adaptive Workflow Management in Computational Clouds 2013 ,		7
260	Global Grids and Software Toolkits: A Study of Four Grid Middleware Technologies 2006 , 431-458		7
259	Decentralized media streaming infrastructure (DeMSI): An adaptive and high-performance peer-to-peer content delivery network. <i>Journal of Systems Architecture</i> , 2006 , 52, 737-772	5.5	7
258	A novel architecture for realizing grid workflow using tuple spaces		7
257	Batch Resizing Policies and Techniques for Fine-Grain Grid Tasks: The Nuts and Bolts. <i>Journal of Information Processing Systems</i> , 2011 , 7, 299-320		7
256	Energy and Carbon Footprint-Aware Management of Geo-Distributed Cloud Data Centers. <i>Advances in Data Mining and Database Management Book Series</i> , 2017 , 27-46	0.6	7

255	Energy and Carbon Footprint-Aware Management of Geo-Distributed Cloud Data Centers1456-1475		7
254	Workload forecasting and energy state estimation in cloud data centers: ML-centric approach. Future Generation Computer Systems, 2021,	7.5	7
253	Performance-aware deployment of streaming applications in distributed stream computing systems. <i>International Journal of Bio-Inspired Computation</i> , 2020 , 15, 52	2.9	7
252	Secure Healthcare Monitoring Sensor Cloud With Attribute-Based Elliptical Curve Cryptography. <i>International Journal of Cloud Applications and Computing</i> , 2021 , 11, 1-18	3.1	7
251	On Elasticity Measurement in Cloud Computing. Scientific Programming, 2016, 2016, 1-13	1.4	7
250	iGiraph: A Cost-Efficient Framework for Processing Large-Scale Graphs on Public Clouds 2016 ,		7
249	Fog Computing Model for Evolving Smart Transportation Applications 2019 , 347-372		7
248	Data Management in Fog Computing 2019 , 171-190		7
247	iFaaSBus: A Security and Privacy based Lightweight Framework for Serverless Computing using IoT and Machine Learning. <i>IEEE Transactions on Industrial Informatics</i> , 2021 , 1-1	11.9	7
246	Multi-Tenant Cloud Service Composition Using Evolutionary Optimization 2018,		7
246	Multi-Tenant Cloud Service Composition Using Evolutionary Optimization 2018, iFogSim2: An extended iFogSim simulator for mobility, clustering, and microservice management in edge and fog computing environments. <i>Journal of Systems and Software</i> , 2022, 190, 111351	3.3	7
	iFogSim2: An extended iFogSim simulator for mobility, clustering, and microservice management in	3.3	
245	iFogSim2: An extended iFogSim simulator for mobility, clustering, and microservice management in edge and fog computing environments. <i>Journal of Systems and Software</i> , 2022 , 190, 111351 Formal Verification of the xDAuth Protocol. <i>IEEE Transactions on Information Forensics and Security</i> ,	3·3 8 7·5	
245	iFogSim2: An extended iFogSim simulator for mobility, clustering, and microservice management in edge and fog computing environments. <i>Journal of Systems and Software</i> , 2022 , 190, 111351 Formal Verification of the xDAuth Protocol. <i>IEEE Transactions on Information Forensics and Security</i> , 2016 , 1-1 Value-based cloud price modeling for segmented business to business market. <i>Future Generation</i>	8	7
245 244 243	iFogSim2: An extended iFogSim simulator for mobility, clustering, and microservice management in edge and fog computing environments. <i>Journal of Systems and Software</i> , 2022 , 190, 111351 Formal Verification of the xDAuth Protocol. <i>IEEE Transactions on Information Forensics and Security</i> , 2016 , 1-1 Value-based cloud price modeling for segmented business to business market. <i>Future Generation Computer Systems</i> , 2019 , 101, 502-523	8	7 6 6
245 244 243	iFogSim2: An extended iFogSim simulator for mobility, clustering, and microservice management in edge and fog computing environments. <i>Journal of Systems and Software</i> , 2022 , 190, 111351 Formal Verification of the xDAuth Protocol. <i>IEEE Transactions on Information Forensics and Security</i> , 2016 , 1-1 Value-based cloud price modeling for segmented business to business market. <i>Future Generation Computer Systems</i> , 2019 , 101, 502-523 Dependable workflow scheduling in global Grids 2009 , Integrated Risk Analysis for a Commercial Computing Service in Utility Computing. <i>Journal of Grid</i>	8 7·5	7666
245 244 243 242 241	iFogSim2: An extended iFogSim simulator for mobility, clustering, and microservice management in edge and fog computing environments. <i>Journal of Systems and Software</i> , 2022 , 190, 111351 Formal Verification of the xDAuth Protocol. <i>IEEE Transactions on Information Forensics and Security</i> , 2016 , 1-1 Value-based cloud price modeling for segmented business to business market. <i>Future Generation Computer Systems</i> , 2019 , 101, 502-523 Dependable workflow scheduling in global Grids 2009 , Integrated Risk Analysis for a Commercial Computing Service in Utility Computing. <i>Journal of Grid Computing</i> , 2009 , 7, 1-24	8 7·5	76666

237	A service-oriented Grid environment for integration of distributed kidney models and resources. <i>Concurrency Computation Practice and Experience</i> , 2008 , 20, 1095-1111	1.4	6
236	Fair resource sharing in hierarchical virtual organizations for global grids 2007,		6
235	Economy-based Content Replication for Peering Content Delivery Networks 2007,		6
234	Engineering an Autonomic Container for WSRF-Based Web Services 2007,		6
233	Policy-based Resource Allocation in Hierarchical Virtual Organizations for Global Grids 2006,		6
232	Machine Learning-based Orchestration of Containers: A Taxonomy and Future Directions. <i>ACM Computing Surveys</i> ,	13.4	6
231	QoS-aware placement of microservices-based IoT applications in Fog computing environments. <i>Future Generation Computer Systems</i> , 2022 , 131, 121-136	7.5	6
230	Artificial Intelligence-based Internet of Things for Industry 5.0. Internet of Things, 2022, 3-45	1.3	6
229	Ten Lessons from Finance for Commercial Sharing of IT Resources244-264		6
228	Cloud Computing Market Segmentation 2018,		6
227	SLA-aware multiple migration planning and scheduling in SDN-NFV-enabled clouds. <i>Journal of Systems and Software</i> , 2021 , 176, 110943	2.2	6
	Systems and software, EVE 1, 110, 1105 15	3.3	
226	Metaheuristics for scheduling of heterogeneous tasks in cloud computing environments: Analysis, performance evaluation, and future directions. Simulation Modelling Practice and Theory, 2021, 111, 102		6
226	Metaheuristics for scheduling of heterogeneous tasks in cloud computing environments: Analysis,		
	Metaheuristics for scheduling of heterogeneous tasks in cloud computing environments: Analysis, performance evaluation, and future directions. <i>Simulation Modelling Practice and Theory</i> , 2021 , 111, 102 MLPAM: A Machine Learning and Probabilistic Analysis Based Model for Preserving Security and	2353	6
225	Metaheuristics for scheduling of heterogeneous tasks in cloud computing environments: Analysis, performance evaluation, and future directions. <i>Simulation Modelling Practice and Theory</i> , 2021 , 111, 102 MLPAM: A Machine Learning and Probabilistic Analysis Based Model for Preserving Security and Privacy in Cloud Environment. <i>IEEE Systems Journal</i> , 2021 , 15, 4248-4259	2353	6
225	Metaheuristics for scheduling of heterogeneous tasks in cloud computing environments: Analysis, performance evaluation, and future directions. <i>Simulation Modelling Practice and Theory</i> , 2021 , 111, 102 MLPAM: A Machine Learning and Probabilistic Analysis Based Model for Preserving Security and Privacy in Cloud Environment. <i>IEEE Systems Journal</i> , 2021 , 15, 4248-4259 Using Secure Auctions to Build a Distributed Metascheduler for the Grid569-588 Storage Exchange: A Global Trading Platform for Storage Services. <i>Lecture Notes in Computer</i>	4.3	6666
225 224 223	Metaheuristics for scheduling of heterogeneous tasks in cloud computing environments: Analysis, performance evaluation, and future directions. <i>Simulation Modelling Practice and Theory</i> , 2021 , 111, 102 MLPAM: A Machine Learning and Probabilistic Analysis Based Model for Preserving Security and Privacy in Cloud Environment. <i>IEEE Systems Journal</i> , 2021 , 15, 4248-4259 Using Secure Auctions to Build a Distributed Metascheduler for the Grid569-588 Storage Exchange: A Global Trading Platform for Storage Services. <i>Lecture Notes in Computer Science</i> , 2006 , 425-436	4.3	6666

219	TSLAM. ACM Transactions on Autonomous and Adaptive Systems, 2019, 13, 1-41	1.2	5
218	A Taxonomy and Survey of Stream Processing Systems 2017 , 183-206		5
217	Data Security in the Cloud 2011 , 573-592		5
216	The Enterprise Cloud Computing Paradigm 2011 , 97-120		5
215	Anekalhtegration of Private and Public Clouds 2011 , 249-274		5
214	Two Auction-Based Resource Allocation Environments: Design and Experience 2009 , 513-539		5
213	Building an automated and self-configurable emulation testbed for grid applications. <i>Software - Practice and Experience</i> , 2010 , 40, n/a-n/a	2.5	5
212	An Autonomic Workflow Management System for Global Grids 2008,		5
211	Portfolio and investment risk analysis on global grids. <i>Journal of Computer and System Sciences</i> , 2007 , 73, 1164-1175	1	5
210	Economy-Based Data Replication Broker 2006 ,		5
210	Economy-Based Data Replication Broker 2006, A Market-Based Scheduler for JXTA-Based Peer-to-Peer Computing System. Lecture Notes in Computer Science, 2004, 147-157	0.9	5
	A Market-Based Scheduler for JXTA-Based Peer-to-Peer Computing System. <i>Lecture Notes in</i>	0.9	
209	A Market-Based Scheduler for JXTA-Based Peer-to-Peer Computing System. <i>Lecture Notes in Computer Science</i> , 2004 , 147-157 Visual Modeler for Grid Modeling and Simulation (GridSim) Toolkit. <i>Lecture Notes in Computer</i>	0.9	
209	A Market-Based Scheduler for JXTA-Based Peer-to-Peer Computing System. <i>Lecture Notes in Computer Science</i> , 2004 , 147-157 Visual Modeler for Grid Modeling and Simulation (GridSim) Toolkit. <i>Lecture Notes in Computer Science</i> , 2003 , 1123-1132 Performance and Cost-Efficient Spark Job Scheduling Based on Deep Reinforcement Learning in	0.9	5
209 208	A Market-Based Scheduler for JXTA-Based Peer-to-Peer Computing System. <i>Lecture Notes in Computer Science</i> , 2004 , 147-157 Visual Modeler for Grid Modeling and Simulation (GridSim) Toolkit. <i>Lecture Notes in Computer Science</i> , 2003 , 1123-1132 Performance and Cost-Efficient Spark Job Scheduling Based on Deep Reinforcement Learning in Cloud Computing Environments. <i>IEEE Transactions on Parallel and Distributed Systems</i> , 2022 , 33, 1695-13. HealthCloud: A system for monitoring health status of heart patients using machine learning and	0.9 7ÅØ	555
209 208 207 206	A Market-Based Scheduler for JXTA-Based Peer-to-Peer Computing System. <i>Lecture Notes in Computer Science</i> , 2004 , 147-157 Visual Modeler for Grid Modeling and Simulation (GridSim) Toolkit. <i>Lecture Notes in Computer Science</i> , 2003 , 1123-1132 Performance and Cost-Efficient Spark Job Scheduling Based on Deep Reinforcement Learning in Cloud Computing Environments. <i>IEEE Transactions on Parallel and Distributed Systems</i> , 2022 , 33, 1695-17. HealthCloud: A system for monitoring health status of heart patients using machine learning and cloud computing. <i>Internet of Things (Netherlands)</i> , 2022 , 17, 100485	0.9 7ÅØ	5555
209 208 207 206	A Market-Based Scheduler for JXTA-Based Peer-to-Peer Computing System. Lecture Notes in Computer Science, 2004, 147-157 Visual Modeler for Grid Modeling and Simulation (GridSim) Toolkit. Lecture Notes in Computer Science, 2003, 1123-1132 Performance and Cost-Efficient Spark Job Scheduling Based on Deep Reinforcement Learning in Cloud Computing Environments. IEEE Transactions on Parallel and Distributed Systems, 2022, 33, 1695-17. HealthCloud: A system for monitoring health status of heart patients using machine learning and cloud computing. Internet of Things (Netherlands), 2022, 17, 100485 A Reinforcement Learning Approach to Reduce Serverless Function Cold Start Frequency 2021,	0.9 7ÅØ	55555

201	E2R-F2N: Energy-efficient retailing using a femtolet-based fog network. <i>Software - Practice and Experience</i> , 2019 , 49, 498-523	2.5	5
200	. IEEE Internet of Things Journal, 2021 , 8, 3665-3677	10.7	5
199	BigDataSDNSim: A simulator for analyzing big data applications in software-defined cloud data centers. <i>Software - Practice and Experience</i> , 2021 , 51, 893-920	2.5	5
198	. IEEE Transactions on Industrial Informatics, 2021 , 1-1	11.9	5
197	Options and Commodity Markets for Computing Resources89-120		5
196	Progressive Search Algorithm for Service Discovery in an IoT Ecosystem 2019 ,		4
195	2019,		4
194	Split keyword fuzzy and synonym search over encrypted cloud data. <i>Multimedia Tools and Applications</i> , 2018 , 77, 10135-10156	2.5	4
193	Exploiting user provided information in dynamic consolidation of virtual machines to minimize energy consumption of cloud data centers 2018 ,		4
192	Sustainable Cloud Computing Realization for Different Applications: A Manifesto. <i>Lecture Notes on Data Engineering and Communications Technologies</i> , 2019 , 95-117	0.4	4
191	Automated SLA Negotiation Framework for Cloud Computing 2013,		4
190	Scientific Workflow Management System for Clouds 2017 , 367-387		4
189	Service Level Agreement(SLA) Based SaaS Cloud Management System 2015,		4
188	Workload-Aware Incremental Repartitioning of Shared-Nothing Distributed Databases for Scalable Cloud Applications 2014 ,		4
187	Contention management in federated virtualized distributed systems: implementation and evaluation. <i>Software - Practice and Experience</i> , 2014 , 44, 353-368	2.5	4
186	Massively Multiplayer Online Game Hosting on Cloud Resources 2011 , 491-509		4
185	Enriching the Integration as a Service Paradigm for the Cloud Era 2011, 57-96		4
184	A utility model for peering of multi-provider content delivery services 2009 ,		4

183	Preemption-aware Admission Control in a Virtualized Grid Federation 2012 ,		4
182	GridCrypt: High Performance Symmetric Key Cryptography Using Enterprise Grids. <i>Lecture Notes in Computer Science</i> , 2004 , 872-877	0.9	4
181	DATESSO 2020 ,		4
180	Resource Management and Scheduling for Big Data Applications in Cloud Computing Environments. <i>Advances in Computer and Electrical Engineering Book Series</i> , 2019 , 1-23	0.3	4
179	Feasibility of Fog Computing. Scalable Computing and Communications, 2020, 127-146	0.2	4
178	A Reciprocation-Based Economy for Multiple Services in a Computational Grid355-369		4
177	CLAWER: Context-aware Cloud-Fog based Workflow Management Framework for Health Emergency Services 2020 ,		4
176	DTCMS: Dynamic traffic congestion management in Social Internet of Vehicles (SIoV). <i>Internet of Things (Netherlands)</i> , 2020 , 16, 100311	6.9	4
175	Elasticity debt 2016 ,		4
174	Geo-Cloudlet: Time and Power Efficient Geospatial Query Resolution using Cloudlet 2019,		4
174	Geo-Cloudlet: Time and Power Efficient Geospatial Query Resolution using Cloudlet 2019 , Joint Energy-QoE Efficient Content Delivery Networks Using Real-Time Energy Management. <i>IEEE Systems Journal</i> , 2020 , 14, 927-938	4.3	4
	Joint Energy-QoE Efficient Content Delivery Networks Using Real-Time Energy Management. <i>IEEE</i>	4·3 7·5	
173	Joint Energy-QoE Efficient Content Delivery Networks Using Real-Time Energy Management. <i>IEEE Systems Journal</i> , 2020 , 14, 927-938 Online cloud resource prediction via scalable window waveform sampling on classified workloads.		
173 172	Joint Energy-QoE Efficient Content Delivery Networks Using Real-Time Energy Management. <i>IEEE Systems Journal</i> , 2020 , 14, 927-938 Online cloud resource prediction via scalable window waveform sampling on classified workloads. <i>Future Generation Computer Systems</i> , 2021 , 117, 338-358 Inverse Queuing Model based Feedback Control for Elastic Container Provisioning of Web Systems	7.5	4
173 172 171	Joint Energy-QoE Efficient Content Delivery Networks Using Real-Time Energy Management. <i>IEEE Systems Journal</i> , 2020 , 14, 927-938 Online cloud resource prediction via scalable window waveform sampling on classified workloads. <i>Future Generation Computer Systems</i> , 2021 , 117, 338-358 Inverse Queuing Model based Feedback Control for Elastic Container Provisioning of Web Systems in Kubernetes. <i>IEEE Transactions on Computers</i> , 2021 , 1-1 LYRIC: Deadline and Budget Aware Spatio-Temporal Query Processing in Cloud. <i>IEEE Transactions</i>	7·5 2·5	4
173 172 171 170	Joint Energy-QoE Efficient Content Delivery Networks Using Real-Time Energy Management. <i>IEEE Systems Journal</i> , 2020 , 14, 927-938 Online cloud resource prediction via scalable window waveform sampling on classified workloads. <i>Future Generation Computer Systems</i> , 2021 , 117, 338-358 Inverse Queuing Model based Feedback Control for Elastic Container Provisioning of Web Systems in Kubernetes. <i>IEEE Transactions on Computers</i> , 2021 , 1-1 LYRIC: Deadline and Budget Aware Spatio-Temporal Query Processing in Cloud. <i>IEEE Transactions on Services Computing</i> , 2021 , 1-1	7·5 2·5	4 4
173 172 171 170 169	Joint Energy-QoE Efficient Content Delivery Networks Using Real-Time Energy Management. <i>IEEE Systems Journal</i> , 2020 , 14, 927-938 Online cloud resource prediction via scalable window waveform sampling on classified workloads. <i>Future Generation Computer Systems</i> , 2021 , 117, 338-358 Inverse Queuing Model based Feedback Control for Elastic Container Provisioning of Web Systems in Kubernetes. <i>IEEE Transactions on Computers</i> , 2021 , 1-1 LYRIC: Deadline and Budget Aware Spatio-Temporal Query Processing in Cloud. <i>IEEE Transactions on Services Computing</i> , 2021 , 1-1 SLA Management in Cloud Computing: A Service Provider's Perspective413-436	7·5 2·5	4 4 4

165	Performance anomaly detection using isolation-trees in heterogeneous workloads of web applications in computing clouds. <i>Concurrency Computation Practice and Experience</i> , 2019 , 31, e5306	1.4	3
164	Decentralised workflow scheduling in volunteer computing systems. <i>International Journal of Parallel, Emergent and Distributed Systems</i> , 2015 , 30, 343-365	1	3
163	Secure policy execution using reusable garbled circuit in the cloud. <i>Future Generation Computer Systems</i> , 2018 , 87, 488-501	7.5	3
162	MapReduce-Based Algorithms for Managing Big RDF Graphs: State-of-the-Art Analysis, Paradigms, and Future Directions 2017 ,		3
161	Task-Based Budget Distribution Strategies for Scientific Workflows with Coarse-Grained Billing Periods in IaaS Clouds 2017 ,		3
160	On the Management of Virtual Machines for Cloud Infrastructures 2011 , 157-191		3
159	Enhancing Cloud Computing Environments Using a Cluster as a Service 2011 , 193-220		3
158	Gene Expression Classification with a Novel Coevolutionary Based Learning Classifier System on Public Clouds 2010 ,		3
157	Performance models for peering Content Delivery Networks 2008,		3
156	Impact of Adaptive Resource Allocation Requests in Utility Cluster Computing Environments 2007,		3
155	J-OPT: A Joint Host and Network Optimization Algorithm for Energy-Efficient Workflow Scheduling in Cloud Data Centers 2019 ,		3
154	Decentralization in Distributed Systems386-399		3
153	A blockchain-based Fog-oriented lightweight framework for smart public vehicular transportation systems. <i>Computer Networks</i> , 2022 , 203, 108676	5.4	3
152	Artificial Intelligence (AI)-Centric Management of Resources in Modern Distributed Computing Systems 2020 ,		3
151	HUNTER: AI based holistic resource management for sustainable cloud computing. <i>Journal of Systems and Software</i> , 2021 , 184, 111124	3.3	3
150	iGateLink: A Gateway Library for Linking IoT, Edge, Fog, and Cloud Computing Environments. <i>Smart Innovation, Systems and Technologies</i> , 2021 , 11-19	0.5	3
149	A Debt-Aware Learning Approach for Resource Adaptations in Cloud Elasticity Management. <i>Lecture Notes in Computer Science</i> , 2017 , 367-382	0.9	3
148	Financial Application as a Software Service on Cloud. <i>Communications in Computer and Information Science</i> , 2012 , 141-151	0.3	3

(2019-2020)

147	Unequal-interval based loosely coupled control method for auto-scaling heterogeneous cloud resources for web applications. <i>Concurrency Computation Practice and Experience</i> , 2020 , 32, e5926	-	3
146	Mobile Cloud Computing and Wireless Sensor Networks: A review, integration architecture, and future directions. <i>IET Networks</i> , 2021 , 10, 141	3	3
145	Security-SLA-guaranteed service function chain deployment in cloud-fog computing networks. Cluster Computing, 2021 , 24, 2479-2494	-	3
144	Fog-Integrated Cloud Architecture enabled multi-attribute combinatorial reverse auctioning framework. <i>Simulation Modelling Practice and Theory</i> , 2021 , 109, 102307		3
143	SDN Enabled QoE and Security Framework for Multimedia Applications in 5G Networks. <i>ACM Transactions on Multimedia Computing, Communications and Applications</i> , 2021 , 17, 1-29	÷	3
142	RSSMSO Rapid Similarity Search on Metric Space Object Stored in Cloud Environment. <i>International Journal of Organizational and Collective Intelligence</i> , 2016 , 6, 33-49	+	3
141	Addressing the Challenges in Federating Edge Resources 2019 , 25-49		3
140	A study on the evaluation of HPC microservices in containerized environment. <i>Concurrency Computation Practice and Experience</i> , 2021 , 33, 1-1		3
139	Automated Controller Placement for Software-Defined Networks to Resist DDoS Attacks. Computers, Materials and Continua, 2021 , 68, 3147-3165	,	3
138	PARMON: a portable and scalable monitoring system for clusters 2000 , 30, 723		3
137	Risk Management in Grids335-353		3
136	Securing the future internet of things with post-quantum cryptography. <i>Security and Privacy</i> , 2022 , 5,		3
135	Machine learning (ML)-centric resource management in cloud computing: A review and future directions. <i>Journal of Network and Computer Applications</i> , 2022 , 204, 103405)	3
134	SLO-Aware Deployment of Web Applications Requiring Strong Consistency Using Multiple Clouds 2015 ,		2
133	2020,		2
132	A Group-based Fault Tolerant Mechanism for Heterogeneous Mobile Clouds 2017,		2
131	Cost-efficient and network-aware dynamic repartitioning-based algorithms for scheduling large-scale graphs in cloud computing environments. <i>Software - Practice and Experience</i> , 2018 , 48, 2174-215	92	2
130	A Cloud Bidding Framework for Deadline Constrained Jobs 2019 ,		2

129	QoS-based Task Group Deployment on Grid by Learning the Performance Data. <i>Journal of Grid Computing</i> , 2014 , 12, 465-483	4.2	2
128	Grid Authorization Graph. Future Generation Computer Systems, 2013, 29, 1909-1918	7.5	2
127	XHAMI Extended HDFS and MapReduce Interface for Image Processing Applications 2015,		2
126	PriDynSim a Simulator for Dynamic Priority Based I/O Scheduling for Cloud Applications 2015 ,		2
125	The interplay between timeliness and scalability in cloud monitoring systems 2015,		2
124	On Application of Ontology and Consensus Theory to Human-Centric IoT: An Emergency Management Case Study 2015 ,		2
123	Design and Development of an Adaptive Workflow-Enabled Spatial-Temporal Analytics Framework 2012 ,		2
122	Virtual Machines Provisioning and Migration Services 2011 , 121-156		2
121	Enabling Computational Steering with an Asynchronous-Iterative Computation Framework 2009,		2
120	Reliability-Driven Reputation Based Scheduling for Public-Resource Computing Using GA 2009,		2
119	An Autonomic Peer-to-Peer Architecture for Hosting Stateful Web Services 2008,		2
118	A Cost-Aware Resource Exchange Mechanism for Load Management across Grids 2008,		2
117	WattsApp: Power-Aware Container Scheduling 2020 ,		2
116	A Deep Reinforcement Learning Approach to Resource Management in Hybrid Clouds Harnessing Renewable Energy and Task Scheduling 2021 ,		2
115	Geospatial Edge-Fog Computing: A Systematic Review, Taxonomy, and Future Directions 2021 , 47-69		2
114	Introduction to Mobile Edge Computing 2021 , 3-19		2
113	Cloud Resource Provisioning and Bottleneck Eliminating for Meshed Web Systems 2020,		2
112	Container Orchestration With Cost-Efficient Autoscaling in Cloud Computing Environments. <i>Advances in Information Security, Privacy, and Ethics Book Series</i> , 2020 , 190-213	0.3	2

(2021-2003)

111	Gridscape: A Tool for the Creation of Interactive and Dynamic Grid Testbed Web Portals. <i>Lecture Notes in Computer Science</i> , 2003 , 131-142	0.9	2	
110	Social Interaction-Enabled Industrial Internet of Things for Predictive Maintenance. <i>Advances in Intelligent Systems and Computing</i> , 2021 , 661-673	0.4	2	
109	Scalable Deployment of a LIGO Physics Application on Public Clouds: Workflow Engine and Resource Provisioning Techniques 2014 , 3-25		2	
108	Internetworking of CDNs. Lecture Notes in Electrical Engineering, 2008, 389-413	0.2	2	
107	Performance Analysis of Preemption-Aware Scheduling in Multi-cluster Grid Environments. <i>Lecture Notes in Computer Science</i> , 2011 , 419-432	0.9	2	
106	Context-Oriented User-Centric Search System for the IoT Based on Fuzzy Clustering. <i>Communications in Computer and Information Science</i> , 2020 , 343-356	0.3	2	
105	Specification, Planning, and Execution of QoS-Aware Grid Workflows309-334		2	
104	CRUPA: collusion resistant user revocable public auditing of shared data in cloud. <i>Journal of Cloud Computing: Advances, Systems and Applications</i> , 2020 , 9,	3.2	2	
103	Legal Aspects of Operating IoT Applications in the Fog 2019 , 411-432		2	
102	Middleware for Fog and Edge Computing: Design Issues 2019 , 123-144		2	
101	An energy-aware multi-sensor geo-fog paradigm for mission critical applications. <i>Journal of Ambient Intelligence and Humanized Computing</i> , 2020 , 11, 3155-3173	3.7	2	
100	SLA-based Scheduling of Spark Jobs in Hybrid Cloud Computing Environments. <i>IEEE Transactions on Computers</i> , 2021 , 1-1	2.5	2	
99	SSSSS: Search for Social Similar Smart Objects in SIoT 2018 ,		2	
98	Special Issue on Methods and Infrastructures for Data Mining at the Edge of Internet of Things. <i>IEEE Internet of Things Journal</i> , 2021 , 8, 10220-10221	10.7	2	
97	DoSP: A Deadline-Aware Dynamic Service Placement Algorithm for Workflow-Oriented IoT Applications in Fog-Cloud Computing Environments. <i>Lecture Notes on Data Engineering and Communications Technologies</i> , 2022 , 21-47	0.4	2	
96	CONFRONT: Cloud-fog-dew based monitoring framework for COVID-19 management. <i>Internet of Things (Netherlands)</i> , 2021 , 16, 100459	6.9	2	
95	MUD-based Behavioral Profiling Security Framework for Software-defined IoT Networks. <i>IEEE Internet of Things Journal</i> , 2021 , 1-1	10.7	2	
94	Reliability-Enhanced Task Offloading in Mobile Edge Computing Environments. <i>IEEE Internet of Things Journal</i> , 2021 , 1-1	10.7	2	

93	An Integration of Global and Enterprise Grid Computing: Gridbus Broker and Xgrid Perspective. Lecture Notes in Computer Science, 2005 , 406-417	2
92	Probability Density for Amazon Spot Instance Price 2019 ,	1
91	Short-Term Prediction Model to Maximize Renewable Energy Usage in Cloud Data Centers 2018 , 203-218	1
90	2016,	1
89	PAX: Partition-aware autoscaling for the Cassandra NoSQL database 2018,	1
88	Taxonomy of Contention Management in Interconnected Distributed Systems 2014 , 1-34	1
87	Organizational Readiness and Change Management in the Cloud Age 2011 , 549-572	1
86	Secure Distributed Data Storage in Cloud Computing 2011 , 221-248	1
85	T-Systems' Cloud-Based Solutions for Business Applications 2011 , 299-319	1
84	A Taxonomy of Autonomic Application Management in Grids 2010 ,	1
83	Service-Level Agreements (SLAs) in the Grid Environment 2009 , 213-236	1
82	A distributed heuristic for decentralized workflow scheduling in global Grids 2009,	1
81	Brain Image Registration Analysis Workflow for fMRI Studies on Global Grids 2009,	1
80	Gridbus Work?ow Management System on Clouds and Global Grids 2008,	1
79	Systematic scalability analysis for microservices granularity adaptation design decisions. <i>Software - Practice and Experience</i> ,	1
78	Edge In-Network Computing Meets Blockchain: A Multi-Domain Heterogeneous Resource Trust Management Architecture. <i>IEEE Network</i> , 2021 , 35, 50-57	1
77	Enabling the Simulation of Service-Oriented Computing and Provisioning Policies for Autonomic Utility Grids. <i>Lecture Notes in Computer Science</i> , 2007 , 136-149	1
76	Optimal Geospatial Query Placement in Cloud. Smart Innovation, Systems and Technologies, 2021, 335-344.5	1

(2021-2020)

75	Dynamic redirection of real-time data streams for elastic stream computing. <i>Future Generation Computer Systems</i> , 2020 , 112, 193-208	7.5	1
74	START: Straggler Prediction and Mitigation for Cloud Computing Environments using Encoder LSTM Networks. <i>IEEE Transactions on Services Computing</i> , 2021 , 1-1	4.8	1
73	Simulating Fog Computing Applications Using iFogSim Toolkit 2021 , 565-590		1
72	MQDS: An energy saving scheduling strategy with diverse QoS constraints towards reconfigurable cloud storage systems. <i>Future Generation Computer Systems</i> , 2022 , 129, 252-268	7.5	1
71	An API for Development of User-Defined Scheduling Algorithms in Aneka PaaS Cloud Software. <i>Advances in Computer and Electrical Engineering Book Series</i> , 2019 , 170-187	0.3	1
70	A Survey of Scheduling and Management Techniques for Data-Intensive Application Workflows. Advances in Systems Analysis, Software Engineering, and High Performance Computing Book Series, 156-17	76 ^{0.4}	1
69	Visual Parameteric Modeler for Rapid Composition of Parameter-Sweep Applications for Processing on Global Grids. <i>Lecture Notes in Computer Science</i> , 2003 , 739-749	0.9	1
68	SoCo-ITS 2019 ,		1
67	Trust Management for Service-Oriented SloT Systems 2020 ,		1
66	Virtual Networking with Azure for Hybrid Cloud Computing in Aneka 2017 , 93-114		1
65	Grid Business Models for Brokers Executing SLA-Based Workflows147-166		1
64	Cooperative Game-Theory-Based Cost Optimization for Scientific Workflows475-493		1
63	Accounting as a Requirement for Market-Oriented Grid Computing187-211		1
62	Trust in Grid Resource Auctions541-568		1
61	SDVADC: Secure Deduplication and Virtual Auditing of Data in Cloud. <i>Procedia Computer Science</i> , 2020 , 171, 2225-2234	1.6	1
60	A Data-Driven Frequency Scaling Approach for Deadline-aware Energy Efficient Scheduling on Graphics Processing Units (GPUs) 2020 ,		1
59	Blockchain-Enhanced Fair Task Scheduling for Cloud-Fog-Edge Coordination Environments: Model and Algorithm. <i>Security and Communication Networks</i> , 2021 , 2021, 1-18	1.9	1
58	FollowMe@LS: Electricity price and source aware resource management in geographically distributed heterogeneous datacenters. <i>Journal of Systems and Software</i> , 2021 , 175, 110907	3.3	1

57	2016,		1
56	EAODBT: Efficient Auditing for Outsourced Database with Token Enforced Cloud Storage 2019 ,		1
55	A Reinforcement Learning Based Approach to Identify Resource Bottlenecks for Multiple Services Interactions in Cloud Computing Environments. <i>Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering,</i> 2021 , 58-74	0.2	1
54	Acinonyx: Dynamic Flow Scheduling for Virtual Machine Migration in SDN-Enabled Clouds 2018,		1
53	Ontology based Service Discovery for Intelligent Transport Systems using Internet of Things 2018,		1
52	OpenPATH: Application aware high-performance software-defined switching framework. <i>Journal of Network and Computer Applications</i> , 2021 , 193, 103196	7.9	1
51	Techniques for Providing Hard Quality-of-Service Guarantees in Job Scheduling403-425		1
50	IoT-Pi : A machine learning-based lightweight framework for cost-effective distributed computing using IoT. <i>Internet Technology Letters</i> ,	1.3	1
49	RESCUE: Enabling green healthcare services using integrated IoT-edge-fog-cloud computing environments. <i>Software - Practice and Experience</i> ,	2.5	1
48	Service composition in dynamic environments: A systematic review and future directions. <i>Journal of Systems and Software</i> , 2022 , 188, 111290	3.3	1
47	Towards simulating the constraint-based nature-inspired smart scheduling in energy intelligent buildings. <i>Simulation Modelling Practice and Theory</i> , 2022 , 102550	3.9	1
46	The optimization of replica distribution in the unstructured overlays. <i>Science China Information Sciences</i> , 2012 , 55, 714-722	3.4	O
45	Market-Oriented Computing and Global Grids: An Introduction 2009, 1-27		О
44	Gridscape II: An extensible grid monitoring portal architecture and its integration with Google Maps. <i>International Journal of Parallel, Emergent and Distributed Systems</i> , 2008 , 23, 153-170	1	O
43	Software-Defined Multi-domain Tactical Networks: Foundations and Future Directions 2021 , 183-227		O
42	High-availability clusters: A taxonomy, survey, and future directions. <i>Journal of Systems and Software</i> , 2022 , 187, 111208	3.3	O
41	Deadline-aware and energy-efficient IoT task scheduling in fog computing systems: A semi-greedy approach. <i>Journal of Network and Computer Applications</i> , 2022 , 201, 103333	7.9	O
40	Internet of Things (IoT) and Cloud Computing Enabled Disaster Management. <i>Scalable Computing and Communications</i> , 2020 , 273-298	0.2	O

39	Green-Aware Mobile Edge Computing for IoT: Challenges, Solutions and Future Directions 2021 , 145-1	64	О
38	Dynamic Parallel Flow Algorithms with Centralized Scheduling for Load Balancing Improvement in Cloud Data Center Networks. <i>IEEE Transactions on Cloud Computing</i> , 2021 , 1-1	3.3	O
37	CAMIG: Concurrency-Aware Live Migration Management of Multiple Virtual Machines in SDN-enabled Clouds. <i>IEEE Transactions on Parallel and Distributed Systems</i> , 2021 , 1-1	3.7	О
36	A multi-level collaborative framework for elastic stream computing systems. <i>Future Generation Computer Systems</i> , 2022 , 128, 117-131	7.5	O
35	Achieving Production Readiness for Cloud Services615-634		O
34	Architectural Elements of Resource Sharing Networks 2012 , 153-184		O
33	A Cost-Efficient Auto-Scaling Algorithm for Large-Scale Graph Processing in Cloud Environments with Heterogeneous Resources. <i>IEEE Transactions on Software Engineering</i> , 2020 , 1-1	3.5	О
32	K-ear: Extracting data access periodic characteristics for energy-aware data clustering and storing in cloud storage systems. <i>Concurrency Computation Practice and Experience</i> , 2021 , 33, e6096	1.4	O
31	Energy and latency aware mobile task assignment for green cloudlets. <i>Simulation Modelling Practice and Theory</i> , 2022 , 102531	3.9	O
30	A status report on IEEE Transactions on Cloud Computing. <i>IEEE Transactions on Cloud Computing</i> , 2015 , 3, 100-100	3.3	
29	Special issue on cloud computing for scientific and business needs. CSI Transactions on ICT, 2017, 5, 339)-333 ₂ 9	
28	Dynamic Selection of Virtual Machines for Application Servers in Cloud Environments 2017 , 187-210		
27	Preface to special issue on Advances in Cloud Computing. <i>Journal of Supercomputing</i> , 2012 , 61, 249-250	0 2.5	
26	Building Content Delivery Networks Using Clouds 2011 , 511-531		
25	Auction-Based Resource Allocation 2009 , 495-511		
24	Grid Business Models, Evaluation, and Principles 2009 , 121-146		
23	SLAs, Negotiation, and Challenges 2009 , 237-259		
22	Introduction to the Special Issue on the 18th International Symposium on Computer Architecture and High Performance Computing. <i>International Journal of Parallel Programming</i> , 2008 , 36, 163-165	1.5	

21	A Topology-Aware Scheduling Strategy for Distributed Stream Computing System. <i>Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering</i> , 2022 , 132-147	.2
20	Device Discovery Techniques for Industrial Internet of Things Through Predictive Analytic Mechanism. <i>Advances in Intelligent Systems and Computing</i> , 2020 , 76-89	·4
19	Data Access Management System in Azure Blob Storage and AWS S3 Multi-Cloud Storage Environments. <i>Advances in Information Security, Privacy, and Ethics Book Series</i> , 2020 , 130-147	-3
18	Resource Co-Allocation in Grid Computing Environments100-118	
17	A Data Stream Prediction Strategy for Elastic Stream Computing Systems. <i>Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering</i> , 2022 , 148-162	.2
16	A Machine Learning-Based Elastic Strategy for Operator Parallelism in a Big Data Stream Computing System. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, 2022, 3-19	.2
15	Grid Computing 2009 , 117-145	
14	Ownership and Decentralization Issues in Resource Allocation Mechanisms49-65	
13	Market-Based Resource Allocation for Differentiated Quality Service Levels285-308	
12	A Business-Rules-Based Model to Manage Virtual Organizations in Collaborative Grid Environments167-18	35
11	Markets, Mechanisms, Games, and Their Implications in Grids29-48	
10	The Nimrod/G Grid Resource Broker for Economics-Based Scheduling371-402	
9	Game-Theoretic Scheduling of Grid Computations451-474	
8	DATAFLOW COMPUTATIONS ON ENTERPRISE GRIDS 2010 , 537-563	
7	Resource Cloud Mashups533-548	
6	On the Performance of Content Delivery Clouds 2012 , 29-54	
5	Resource Co-Allocation in Grid Computing Environments 2012 , 100-118	
4	A Survey of Scheduling and Management Techniques for Data-Intensive Application Workflows 2013 , 1170-1190	

LIST OF PUBLICATIONS

Automatic Provisioning of Intercloud Resources driven by Nonfunctional Requirements of Applications **2016**, 446-461

2	Adaptive processing rate based container provisioning for meshed Micro-services in Kubernetes Clouds. <i>CCF Transactions on High Performance Computing</i> ,1	0.7
1	State space model and queuing network based Cloud Resource Provisioning for Meshed Web Systems. <i>IEEE Transactions on Parallel and Distributed Systems</i> , 2022 , 1-1	3.7