Zhu Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2276701/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hemicellulose degradation: An overlooked issue in acidic deep eutectic solvents pretreatment of lignocellulosic biomass. Industrial Crops and Products, 2022, 187, 115335.	2.5	48
2	Microbial Conversion of Lignin-Based Compounds into Carotenoids by Rhodococci. Applied Biochemistry and Biotechnology, 2021, 193, 3442-3453.	1.4	5
3	Efficient biosynthesis of lipids from concentrated biomass hydrolysates by an oleaginous yeast. Bioresource Technology Reports, 2021, 15, 100712.	1.5	2
4	Co-valorization of paper mill sludge and corn steep liquor for enhanced n-butanol production with Clostridium tyrobutyricum Δcat1::adhE2. Bioresource Technology, 2020, 296, 122347.	4.8	25
5	Nano on micro: tuning microbial metabolisms by nano-based artificial mediators to enhance and expand production of biochemicals. Current Opinion in Biotechnology, 2020, 64, 161-168.	3.3	11
6	Insights into Structural Changes of Lignin toward Tailored Properties during Deep Eutectic Solvent Pretreatment. ACS Sustainable Chemistry and Engineering, 2020, 8, 9783-9793.	3.2	72
7	Lignin extraction and upgrading using deep eutectic solvents. Industrial Crops and Products, 2020, 147, 112241.	2.5	159
8	Bioaldehydes and beyond: Expanding the realm of bioderived chemicals using biogenic aldehydes as platforms. Current Opinion in Chemical Biology, 2020, 59, 37-46.	2.8	10
9	One-pot selective conversion of lignocellulosic biomass into furfural and co-products using aqueous choline chloride/methyl isobutyl ketone biphasic solvent system. Bioresource Technology, 2019, 289, 121708.	4.8	45
10	Effects of alkaline hydrogen peroxide treatment on cellulose accessibility of switchgrass pretreated by acidic deep eutectic solvent. Cellulose, 2019, 26, 9439-9446.	2.4	17
11	Ternary deep eutectic solvents for effective biomass deconstruction at high solids and low enzyme loadings. Bioresource Technology, 2019, 279, 281-286.	4.8	94
12	Deep eutectic solvent pretreatment enabling full utilization of switchgrass. Bioresource Technology, 2018, 263, 40-48.	4.8	141
13	Aqueous Choline Chloride: A Novel Solvent for Switchgrass Fractionation and Subsequent Hemicellulose Conversion into Furfural. ACS Sustainable Chemistry and Engineering, 2018, 6, 6910-6919.	3.2	56
14	Ultrafast fractionation of lignocellulosic biomass by microwave-assisted deep eutectic solvent pretreatment. Bioresource Technology, 2018, 250, 532-537.	4.8	227
15	High-Solid Lignocellulose Processing Enabled by Natural Deep Eutectic Solvent for Lignin Extraction and Industrially Relevant Production of Renewable Chemicals. ACS Sustainable Chemistry and Engineering, 2018, 6, 12205-12216.	3.2	137
16	Biological valorization strategies for converting lignin into fuels and chemicals. Renewable and Sustainable Energy Reviews, 2017, 73, 610-621.	8.2	206
17	Co-fermentation of lignocellulose-based glucose and inhibitory compounds for lipid synthesis by Rhodococcus jostii RHA1. Process Biochemistry, 2017, 57, 159-166.	1.8	15
18	Non-sterile fermentations for the economical biochemical conversion of renewable feedstocks. Biotechnology Letters, 2017, 39, 1765-1777.	1.1	29

#	Article	IF	CITATIONS
19	Effects of Salts Contained in Lignocellulose-Derived Sugar Streams on Microbial Lipid Production. Applied Biochemistry and Biotechnology, 2017, 183, 1362-1374.	1.4	7
20	Reducing biomass recalcitrance via mild sodium carbonate pretreatment. Bioresource Technology, 2016, 209, 386-390.	4.8	60