Günther H J Peters

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2276682/publications.pdf

Version: 2024-02-01

87723 98622 5,368 153 38 67 citations h-index g-index papers 159 159 159 6307 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Combination of high throughput and structural screening to assess protein stability – A screening perspective. European Journal of Pharmaceutics and Biopharmaceutics, 2022, 171, 1-10.	2.0	5
2	Investigation of the pH-dependent aggregation mechanisms of GCSF using low resolution protein characterization techniques and advanced molecular dynamics simulations. Computational and Structural Biotechnology Journal, 2022, 20, 1439-1455.	1.9	4
3	Water Distribution on Protein Surface of the Lyophilized Proteins With Different Topography Studied by Molecular Dynamics Simulations. Journal of Pharmaceutical Sciences, 2022, 111, 2299-2311.	1.6	O
4	Self-Interactions of Two Monoclonal Antibodies: Small-Angle X-ray Scattering, Light Scattering, and Coarse-Grained Modeling. Molecular Pharmaceutics, 2022, 19, 508-519.	2.3	3
5	pH- and concentration-dependent supramolecular assembly of a fungal defensin plectasin variant into helical non-amyloid fibrils. Nature Communications, 2022, 13 , .	5.8	9
6	Virtual Bioprospecting of Interfacial Enzymes: Relating Sequence and Kinetics. ACS Catalysis, 2022, 12, 7427-7435.	5 . 5	11
7	Dynamics of Human Serum Transferrin in Varying Physicochemical Conditions Explored by Using Molecular Dynamics Simulations. Molecular Pharmaceutics, 2022, 19, 2795-2806.	2.3	1
8	Development of a fast screening method for selecting excipients in formulations using MD simulations, NMR and microscale thermophoresis. European Journal of Pharmaceutics and Biopharmaceutics, 2021, 158, 11-20.	2.0	5
9	Computing Cellulase Kinetics with a Two-Domain Linear Interaction Energy Approach. ACS Omega, 2021, 6, 1547-1555.	1.6	7
10	Binding Sites for Oligosaccharide Repeats from Lactic Acid Bacteria Exopolysaccharides on Bovine β-Lactoglobulin Identified by NMR Spectroscopy. ACS Omega, 2021, 6, 9039-9052.	1.6	7
11	Direct coordination of pterin to Fe $<$ sup $>$ II $<$ /sup $>$ enables neurotransmitter biosynthesis in the pterin-dependent hydroxylases. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	8
12	Physical constraints and functional plasticity of cellulases. Nature Communications, 2021, 12, 3847.	5.8	21
13	Electrostatics Drive Oligomerization and Aggregation of Human Interferon Alpha-2a. Journal of Physical Chemistry B, 2021, 125, 13657-13669.	1.2	5
14	Small angle X-ray scattering and molecular dynamic simulations provide molecular insight for stability of recombinant human transferrin. Journal of Structural Biology: X, 2020, 4, 100017.	0.7	9
15	Investigations of Albumin–Insulin Detemir Complexes Using Molecular Dynamics Simulations and Free Energy Calculations. Molecular Pharmaceutics, 2020, 17, 132-144.	2.3	8
16	Advancing Therapeutic Protein Discovery and Development through Comprehensive Computational and Biophysical Characterization. Molecular Pharmaceutics, 2020, 17, 426-440.	2.3	25
17	Water Distribution and Clustering on the Lyophilized IgG1 Surface: Insight from Molecular Dynamics Simulations. Molecular Pharmaceutics, 2020, 17, 900-908.	2.3	6
18	Albumin-neprilysin fusion protein: understanding stability using small angle X-ray scattering and molecular dynamic simulations. Scientific Reports, 2020, 10, 10089.	1.6	8

#	Article	IF	CITATIONS
19	Removal of N-linked glycans in cellobiohydrolase Cel7A from Trichoderma reesei reveals higher activity and binding affinity on crystalline cellulose. Biotechnology for Biofuels, 2020, 13, 136.	6.2	15
20	The Effect of Point Mutations on the Biophysical Properties of an Antimicrobial Peptide: Development of a Screening Protocol for Peptide Stability Screening. Molecular Pharmaceutics, 2020, 17, 3298-3313.	2.3	9
21	Evaluation of a concerted vs. sequential oxygen activation mechanism in α-ketoglutarate–dependent nonheme ferrous enzymes. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 5152-5159.	3.3	14
22	The Catalytic Acid–Base in GH109 Resides in a Conserved GGHGG Loop and Allows for Comparable α-Retaining and β-Inverting Activity in an <i>N</i> -Acetylgalactosaminidase from <i>Akkermansia muciniphila</i> ACS Catalysis, 2020, 10, 3809-3819.	5.5	15
23	Water-Intake and Water-Molecule Paths to the Active Site of Secretory Phospholipase A ₂ Studied Using MD Simulations and the Tracking Tool AQUA-DUCT. Journal of Physical Chemistry B, 2020, 124, 1881-1891.	1.2	2
24	Concentrated protein solutions investigated using acoustic levitation and small-angle X-ray scattering. Journal of Synchrotron Radiation, 2020, 27, 396-404.	1.0	3
25	Structural and functional aspects of mannuronic acid–specific PL6 alginate lyase from the human gut microbe Bacteroides cellulosilyticus. Journal of Biological Chemistry, 2019, 294, 17915-17930.	1.6	40
26	Structure-based discovery of a new protein-aggregation breaking excipient. European Journal of Pharmaceutics and Biopharmaceutics, 2019, 144, 207-216.	2.0	6
27	Studies of the oligomerisation mechanism of a cystatin-based engineered protein scaffold. Scientific Reports, 2019, 9, 9067.	1.6	2
28	Solution structures of long-acting insulin analogues and their complexes with albumin. Acta Crystallographica Section D: Structural Biology, 2019, 75, 272-282.	1.1	10
29	Application of interpretable artificial neural networks to early monoclonal antibodies development. European Journal of Pharmaceutics and Biopharmaceutics, 2019, 141, 81-89.	2.0	48
30	Conformational Stability Study of a Therapeutic Peptide Plectasin Using Molecular Dynamics Simulations in Combination with NMR. Journal of Physical Chemistry B, 2019, 123, 4867-4877.	1.2	14
31	Dual Nicotinic Acetylcholine Receptor $\hat{l}\pm4\hat{l}^22$ Antagonists/ $\hat{l}\pm7$ Agonists: Synthesis, Docking Studies, and Pharmacological Evaluation of Tetrahydroisoquinolines and Tetrahydroisoquinolinium Salts. Journal of Medicinal Chemistry, 2018, 61, 1719-1729.	2.9	16
32	Interaction between structurally different heteroexopolysaccharides and \hat{l}^2 -lactoglobulin studied by solution scattering and analytical ultracentrifugation. International Journal of Biological Macromolecules, 2018, 111, 746-754.	3.6	4
33	Self-Interaction of Human Serum Albumin: A Formulation Perspective. ACS Omega, 2018, 3, 16105-16117.	1.6	24
34	Soluble 1:1 complexes and insoluble 3:2 complexes – Understanding the phase-solubility diagram of hydrocortisone and γ-cyclodextrin. International Journal of Pharmaceutics, 2017, 531, 504-511.	2.6	30
35	Chemoenzymatic synthesis of fluorogenic phospholipids and evaluation in assays of phospholipases A, C and D. Chemistry and Physics of Lipids, 2017, 202, 49-54.	1.5	7
36	Revealing the Compact Structure of Lactic Acid Bacterial Heteroexopolysaccharides by SAXS and DLS. Biomacromolecules, 2017, 18, 747-756.	2.6	11

#	Article	IF	Citations
37	Isoform-Specific Substrate Inhibition Mechanism of Human Tryptophan Hydroxylase. Biochemistry, 2017, 56, 6155-6164.	1.2	14
38	Small-Angle X-ray Scattering Data in Combination with RosettaDock Improves the Docking Energy Landscape. Journal of Chemical Information and Modeling, 2017, 57, 2463-2475.	2.5	17
39	The influence of different linker modifications on the catalytic activity and cellulose affinity of cellobiohydrolase Cel7A from Hypocrea jecorina. Protein Engineering, Design and Selection, 2017, 30, 495-501.	1.0	19
40	Glucagon-like Peptide 1 Conjugated to Recombinant Human Serum Albumin Variants with Modified Neonatal Fc Receptor Binding Properties. Impact on Molecular Structure and Half-Life. Biochemistry, 2017, 56, 4860-4870.	1.2	18
41	Effect of Water Clustering on the Activity of Candida antarctica Lipase B in Organic Medium. Catalysts, 2017, 7, 227.	1.6	20
42	Stabilization of tryptophan hydroxylase 2 by <scp>l</scp> â€phenylalanineâ€induced dimerization. FEBS Open Bio, 2016, 6, 987-999.	1.0	8
43	Structure and dynamics of water and lipid molecules in charged anionic DMPG lipid bilayer membranes. Journal of Chemical Physics, 2016, 144, 144904.	1.2	9
44	A Correlation between the Activity of <i>Candida antarctica</i> Lipase B and Differences in Binding Free Energies of Organic Solvent and Substrate. ACS Catalysis, 2016, 6, 6350-6361.	5.5	45
45	Theoretical Assessment of Fluorinated Phospholipids in the Design of Liposomal Drug-Delivery Systems. Journal of Physical Chemistry B, 2016, 120, 9661-9671.	1.2	4
46	In silico study of amphiphilic nanotubes based on cyclic peptides in polar and non-polar solvent. Journal of Molecular Modeling, 2016, 22, 264.	0.8	5
47	The Importance of Magnesium in the Human Body. Advances in Clinical Chemistry, 2016, 73, 169-193.	1.8	114
48	Pyrazole Based Inhibitors against Enzymes of Staphylococcus aureus: A Computational Study. Journal of Proteomics and Bioinformatics, 2015, 08, .	0.4	2
49	Oligomerization of a Glucagon-like Peptide 1 Analog: Bridging Experiment and Simulations. Biophysical Journal, 2015, 109, 1202-1213.	0.2	35
50	Membrane Interaction of the Factor VIIIa Discoidin Domains in Atomistic Detail. Biochemistry, 2015, 54, 6123-6131.	1.2	20
51	Synthesis and crystal structures of 2-methyl-4-aryl-5-oxo-5H-indeno [1,2-b] pyridine carboxylate derivatives. Chemistry Central Journal, 2014, 8, .	2.6	7
52	Methyl 1-ethyl-3′-[hydroxy(naphthalen-1-yl)methyl]-1′-methyl-2-oxospiro[indoline-3,2′-pyrrolidine]-3′-carboxy Acta Crystallographica Section E: Structure Reports Online, 2014, 70, o540-o540.	/late2	0
53	Extending the hydrophobic cavity of \hat{l}^2 -cyclodextrin results in more negative heat capacity changes but reduced binding affinities. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2014, 78, 351-361.	0.9	19
54	Determination of stability constants of tauro- and glyco-conjugated bile salts with the negatively charged sulfobutylether-1 ² -cyclodextrin: comparison of affinity capillary electrophoresis and isothermal titration calorimetry and thermodynamic analysis of the interaction. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2014, 78, 185-194.	0.9	17

#	Article	IF	CITATIONS
55	Exploring the Local Elastic Properties of Bilayer Membranes Using Molecular Dynamics Simulations. Journal of Physical Chemistry B, 2014, 118, 12883-12891.	1.2	9
56	Computational Investigation of Enthalpy–Entropy Compensation in Complexation of Glycoconjugated Bile Salts with β-Cyclodextrin and Analogs. Journal of Physical Chemistry B, 2014, 118, 10889-10897.	1.2	17
57	Interaction of neurotransmitters with a phospholipid bilayer: A molecular dynamics study. Chemistry and Physics of Lipids, 2014, 184, 7-17.	1.5	28
58	Binding of Serotonin to Lipid Membranes. Journal of the American Chemical Society, 2013, 135, 2164-2171.	6.6	65
59	Development of a cysteine-deprived and C-terminally truncated GLP-1 receptor. Peptides, 2013, 49, 100-108.	1.2	7
60	Effects of Mannose, Fructose, and Fucose on the Structure, Stability, and Hydration of Lysozyme in Aqueous Solution. Current Physical Chemistry, 2013, 3, 113-125.	0.1	5
61	Diffusion of water and selected atoms in DMPC lipid bilayer membranes. Journal of Chemical Physics, 2012, 137, 204910.	1.2	32
62	Protein Dynamics in Organic Media at Varying Water Activity Studied by Molecular Dynamics Simulation. Journal of Physical Chemistry B, 2012, 116, 2575-2585.	1.2	68
63	Mean Span Dimensions of Ideal Polymer Chains Containing Branches and Rings. Macromolecules, 2011, 44, 403-412.	2.2	27
64	Membrane Restructuring by Phospholipase A2 Is Regulated by the Presence of Lipid Domains. Biophysical Journal, 2011, 101, 90-99.	0.2	19
65	Secretory Phospholipase A ₂ Activity toward Diverse Substrates. Journal of Physical Chemistry B, 2011, 115, 6853-6861.	1.2	9
66	Pair correlation function integrals: Computation and use. Journal of Chemical Physics, 2011, 135, 084113.	1.2	13
67	Affinity of Four Polar Neurotransmitters for Lipid Bilayer Membranes. Journal of Physical Chemistry B, 2011, 115, 196-203.	1.2	40
68	Transmembrane \hat{l}_{\pm} -Helix 2 and 7 Are Important for Small Molecule-Mediated Activation of the GLP-1 Receptor. Pharmacology, 2011, 88, 340-348.	0.9	9
69	Total and direct correlation function integrals from molecular simulation of binary systems. Fluid Phase Equilibria, 2011, 302, 32-42.	1.4	16
70	Synthesis and serotonin transporter activity of 1,3-bis(aryl)-2-nitro-1-propenes as a new class of anticancer agents. Bioorganic and Medicinal Chemistry, 2011, 19, 1328-1348.	1.4	21
71	Reconciliation of opposing views on membrane–sugar interactions. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 1874-1878.	3.3	126
72	A Theoretical Study of the Separation Principle in Size Exclusion Chromatography. Macromolecules, 2010, 43, 1651-1659.	2.2	47

#	Article	IF	Citations
73	Liposomal Formulation of Retinoids Designed for Enzyme Triggered Release. Journal of Medicinal Chemistry, 2010, 53, 3782-3792.	2.9	77
74	Correlated Volumeâ^'Energy Fluctuations of Phospholipid Membranes: A Simulation Study. Journal of Physical Chemistry B, 2010, 114, 2124-2130.	1.2	15
75	Crystal Structure of Glucagon-like Peptide-1 in Complex with the Extracellular Domain of the Glucagon-like Peptide-1 Receptor. Journal of Biological Chemistry, 2010, 285, 723-730.	1.6	239
76	Substrate Recognition in the <i>Escherichia coli</i> Ammonia Channel AmtB: A QM/MM Investigation. Journal of Physical Chemistry B, 2010, 114, 11859-11865.	1.2	12
77	Accurate Kirkwood–Buff integrals from molecular simulations. Molecular Simulation, 2010, 36, 1243-1252.	0.9	24
78	Drug Delivery by an Enzymeâ€Mediated Cyclization of a Lipid Prodrug with Unique Bilayerâ€Formation Properties. Angewandte Chemie - International Edition, 2009, 48, 1823-1826.	7.2	67
79	The effect of Asp54 phosphorylation on the energetics and dynamics in the response regulator protein SpoOF studied by molecular dynamics. Proteins: Structure, Function and Bioinformatics, 2009, 75, 648-658.	1.5	4
80	Synthesis and serotonin transporter activity of sulphur-substituted \hat{l} ±-alkyl phenethylamines as a new class of anticancer agents. European Journal of Medicinal Chemistry, 2009, 44, 4862-4888.	2.6	20
81	Mechanistic Study of the sPLA ₂ -Mediated Hydrolysis of a Thio-ester Pro Anticancer Ether Lipid. Journal of the American Chemical Society, 2009, 131, 12193-12200.	6.6	57
82	Effects of Fatty Acid Inclusion in a DMPC Bilayer Membrane. Journal of Physical Chemistry B, 2009, 113, 92-102.	1.2	21
83	Total correlation function integrals and isothermal compressibilities from molecular simulations. Fluid Phase Equilibria, 2008, 273, 1-10.	1.4	11
84	Molecular Basis of Phospholipase A2 Activity toward Phospholipids with sn-1 Substitutions. Biophysical Journal, 2008, 94, 14-26.	0.2	40
85	Equilibrium partitioning of macromolecules in confining geometries: Improved universality with a new molecular size parameter. Journal of Chemical Physics, 2008, 128, 124904.	1.2	24
86	Proof of the identity between the depletion layer thickness and half the average span for an arbitrary polymer chain. Journal of Chemical Physics, 2008, 129, 074904.	1.2	10
87	Volume-Energy Correlations in the Slow Degrees of Freedom of Computer-Simulated Phospholipid Membranes. AIP Conference Proceedings, 2008, , .	0.3	3
88	Generation of thermodynamic data for organic liquid mixtures from molecular simulations. Molecular Simulation, 2007, 33, 449-457.	0.9	16
89	Secretory Phospholipase A2Hydrolysis of Phospholipid Analogues Is Dependent on Water Accessibility to the Active Site. Journal of the American Chemical Society, 2007, 129, 5451-5461.	6.6	25
90	Reparameterization of All-Atom Dipalmitoylphosphatidylcholine Lipid Parameters Enables Simulation of Fluid Bilayers at Zero Tension. Biophysical Journal, 2007, 92, 4157-4167.	0.2	83

#	Article	IF	Citations
91	Simulation of the Coupling between Nucleotide Binding and Transmembrane Domains in the ATP Binding Cassette Transporter BtuCD. Biophysical Journal, 2007, 92, 2727-2734.	0.2	53
92	Homology Modeling of the Serotonin Transporter: Insights into the Primary Escitalopram-binding Site. ChemMedChem, 2007, 2, 815-826.	1.6	45
93	Molecular Dynamics Simulations of Na+/Clâ^'-Dependent Neurotransmitter Transporters in a Membrane-Aqueous System. ChemMedChem, 2007, 2, 827-840.	1.6	35
94	Molecular packing in 1-hexanol–DMPC bilayers studied by molecular dynamics simulation. Biophysical Chemistry, 2007, 125, 104-111.	1.5	32
95	Synthesis of sn-1 functionalized phospholipids as substrates for secretory phospholipase A2. Chemistry and Physics of Lipids, 2007, 146, 54-66.	1.5	15
96	State conditions transferability of vapor–liquid equilibria via fluctuation solution theory with correlation function integrals from molecular dynamics simulation. Fluid Phase Equilibria, 2007, 260, 169-176.	1.4	17
97	Thermodynamic models from fluctuation solution theory analysis of molecular simulations. Fluid Phase Equilibria, 2007, 261, 185-190.	1.4	10
98	Domain-Induced Activation of Human Phospholipase A2 Type IIA: Local versus Global Lipid Composition. Biophysical Journal, 2006, 90, 3165-3175.	0.2	70
99	Ammonium Recruitment and Ammonia Transport by E. coli Ammonia Channel AmtB. Biophysical Journal, 2006, 91, 4401-4412.	0.2	58
100	The effect of calcium on the properties of charged phospholipid bilayers. Biochimica Et Biophysica Acta - Biomembranes, 2006, 1758, 573-582.	1.4	123
101	Activation of interfacial enzymes at membrane surfaces. Journal of Physics Condensed Matter, 2006, 18, S1293-S1304.	0.7	64
102	Methodological problems in pressure profile calculations for lipid bilayers. Journal of Chemical Physics, 2005, 122, 124903.	1.2	114
103	The hydrophobic effect: Molecular dynamics simulations of water confined between extended hydrophobic and hydrophilic surfaces. Journal of Chemical Physics, 2004, 120, 9729-9744.	1.2	104
104	Water-molecule network and active-site flexibility of apo protein tyrosine phosphatase 1B. Acta Crystallographica Section D: Biological Crystallography, 2004, 60, 1527-1534.	2.5	60
105	Mapping of Epitopes for Autoantibodies to the Type 1 Diabetes Autoantigen IA-2 by Peptide Phage Display and Molecular Modeling: Overlap of Antibody and T Cell Determinants. Journal of Immunology, 2004, 172, 4084-4090.	0.4	43
106	Residue 259 in Protein-Tyrosine Phosphatase PTP1B and PTPα Determines the Flexibility of Glutamine 262. Biochemistry, 2004, 43, 8418-8428.	1.2	12
107	Simulations of a Membrane-Anchored Peptide: Structure, Dynamics, and Influence on Bilayer Properties. Biophysical Journal, 2004, 86, 3556-3575.	0.2	66
108	Evolution of a Rippled Membrane during Phospholipase A2 Hydrolysis Studied by Time-Resolved AFM. Biophysical Journal, 2004, 87, 408-418.	0.2	52

#	Article	IF	CITATIONS
109	Residue 182 influences the second step of protein-tyrosine phosphatase-mediated catalysis. Biochemical Journal, 2004, 378, 421-433.	1.7	32
110	Water in Contact with Extended Hydrophobic Surfaces: Direct Evidence of Weak Dewetting. Physical Review Letters, 2003, 90, 086101.	2.9	224
111	Ligand-Induced Conformational Changes: Improved Predictions of Ligand Binding Conformations and Affinities. Biophysical Journal, 2003, 84, 2273-2281.	0.2	82
112	Enzyme kinetic characterization of protein tyrosine phosphatases. Biochimie, 2003, 85, 527-534.	1.3	24
113	A novel strategy for the development of selective active-site inhibitors of the protein tyrosine phosphatase-like proteins islet-cell antigen 512 (IA-2) and phogrin (IA-2beta). Biochemical Journal, 2003, 373, 393-401.	1.7	19
114	Structure Determination of T Cell Protein-tyrosine Phosphatase. Journal of Biological Chemistry, 2002, 277, 19982-19990.	1.6	152
115	Orientation and Conformation of a Lipase at an Interface Studied by Molecular Dynamics Simulations. Biophysical Journal, 2002, 83, 98-111.	0.2	41
116	Essential motions in a fungal lipase with bound substrate, covalently attached inhibitor and product. Journal of Molecular Recognition, 2002, 15, 393-404.	1.1	15
117	The dynamic response of a fungal lipase in the presence of charged surfactants. Colloids and Surfaces B: Biointerfaces, 2002, 26, 84-101.	2.5	11
118	Glycosylation of Thermomyces lanuginosa lipase enhances surface binding towards phospholipids, but does not significantly influence the catalytic activity. Colloids and Surfaces B: Biointerfaces, 2002, 26, 125-134.	2.5	12
119	Dynamics of the Substrate Binding Pocket in the Presence of an Inhibitor Covalently Attached to a Fungal Lipase. Journal of Biomolecular Structure and Dynamics, 2001, 19, 1-14.	2.0	3
120	Steric Hindrance as a Basis for Structure-Based Design of Selective Inhibitors of Protein-Tyrosine Phosphatasesâ€. Biochemistry, 2001, 40, 14812-14820.	1.2	79
121	Influence of a Lipid Interface on Protein Dynamics in a Fungal Lipase. Biophysical Journal, 2001, 81, 3052-3065.	0.2	34
122	Structural and Evolutionary Relationships among Protein Tyrosine Phosphatase Domains. Molecular and Cellular Biology, 2001, 21, 7117-7136.	1.1	660
123	Dipolar and chain-linking effects on the rheology of grafted chains in a nanopore under shear at different grafting densities. Physical Review E, 2001, 64, 011507.	0.8	1
124	Residue 259 Is a Key Determinant of Substrate Specificity of Protein-tyrosine Phosphatases 1B and $\hat{l}\pm$. Journal of Biological Chemistry, 2000, 275, 18201-18209.	1.6	43
125	Molecular Dynamics Simulations of Protein-Tyrosine Phosphatase 1B. II. Substrate-Enzyme Interactions and Dynamics. Biophysical Journal, 2000, 78, 2191-2200.	0.2	48
126	Structure-based Design of a Low Molecular Weight, Nonphosphorus, Nonpeptide, and Highly Selective Inhibitor of Protein-tyrosine Phosphatase 1B. Journal of Biological Chemistry, 2000, 275, 10300-10307.	1.6	158

#	Article	IF	CITATIONS
127	Influence of Surface Properties of Mixed Monolayers on Lipolytic Hydrolysis. Langmuir, 2000, 16, 2779-2788.	1.6	29
128	Computational analysis of chain flexibility and fluctuations in Rhizomucor miehei lipase. Protein Engineering, Design and Selection, 1999, 12, 747-754.	1.0	38
129	Molecular Dynamics Simulations of Protein-Tyrosine Phosphatase 1B. I. Ligand-Induced Changes in the Protein Motions. Biophysical Journal, 1999, 77, 505-515.	0.2	42
130	Analysis of the Dynamics of (i) Rhizomucor miehei (i) Lipase at Different Temperatures. Journal of Biomolecular Structure and Dynamics, 1999, 16, 1003-1018.	2.0	7
131	Assignment of sideâ€chain conformation using adiabatic energy mapping, free energy perturbation, and molecular dynamic simulations. Protein Science, 1999, 8, 25-34.	3.1	4
132	Active Serine Involved in the Stabilization of the Active Site Loop in theHumicolalanuginosaLipaseâ€. Biochemistry, 1998, 37, 12375-12383.	1.2	43
133	Electrostatic Evaluation of the Signature Motif (H/V)CX5R(S/T) in Proteinâ°'Tyrosine Phosphatases. Biochemistry, 1998, 37, 5383-5393.	1.2	107
134	X-ray diffraction and molecular-dynamics studies: Structural analysis of phases in diglyceride monolayers. Physical Review E, 1998, 57, 3153-3163.	0.8	9
135	Computational studies of the activation of lipases and the effect of a hydrophobic environment. Protein Engineering, Design and Selection, 1997, 10, 137-147.	1.0	36
136	Essential dynamics of lipase binding sites: the effect of inhibitors of different chain length. Protein Engineering, Design and Selection, 1997, 10, 149-158.	1.0	54
137	Molecular Dynamics Simulations of the Melting of a Hexane Monolayer:  Isotropic versus Anisotropic Force Fields. Langmuir, 1996, 12, 1557-1565.	1.6	33
138	The molecular dynamics simulations of the melting of a hexane bilayer. Surface Science, 1996, 347, 169-181.	0.8	19
139	Computer simulation of the rheology of grafted chains under shear. II. Depletion of chains at the wall. Physical Review E, 1996, 54, 5493-5501.	0.8	20
140	Structure and dynamics of lipid monolayers: implications for enzyme catalysed lipolysis. Nature Structural and Molecular Biology, 1995, 2, 395-401.	3.6	35
141	Computer simulation of the rheology of grafted chains under shear. Physical Review E, 1995, 52, 1882-1890.	0.8	54
142	Effect of substrate potential strength on the melting temperature of a hexane monolayer adsorbed on graphite. Journal of Chemical Physics, 1995, 102, 1098-1099.	1.2	18
143	Modeling of Complex Biological Systems. 2. Effect of Chain Length on the Phase Transitions Observed in Diglyceride Monolayers. Langmuir, 1995, 11, 4072-4081.	1.6	15
144	Computing at different levels of approximation: examples in molecular biology. IEEE Computational Science and Engineering, 1995, 2, 43-54.	0.6	1

#	Article	IF	CITATIONS
145	Influence of surface and torsion potentials on the melting properties of a hexane monolayer on a graphite substrate. Molecular Physics, 1995, 84, 1039-1047.	0.8	7
146	Observation of Droplet Growth and Coalescence in Phase-Separating Lennard-Jones Fluids. The Journal of Physical Chemistry, 1995, 99, 12335-12340.	2.9	3
147	Modeling of complex biological systems. I. Molecular dynamics studies of diglyceride monolayers. Journal of Chemical Physics, 1994, 100, 5996-6010.	1.2	28
148	Phase transitions in diglyceride monolayers studied by computer simulations, pressure-area isotherms and X-ray diffraction. Nuovo Cimento Della Societa Italiana Di Fisica D - Condensed Matter, Atomic, Molecular and Chemical Physics, Biophysics, 1994, 16, 1479-1485.	0.4	4
149	Multipolar electrolyte solution models. II. Monte Carlo convergence and size dependence. Journal of Chemical Physics, 1993, 98, 1539-1545.	1.2	9
150	Multipolar electrolyte solution models. III. Free energy of the charged and dipolar hard sphere mixture. Journal of Chemical Physics, 1993, 98, 1546-1551.	1.2	3
151	Structure and thermodynamics of vapor condensate in a finite system. The Journal of Physical Chemistry, 1991, 95, 909-920.	2.9	13
152	Integral Equation Analysis of Homogeneous Nucleation. ACS Symposium Series, 1990, , 16-34.	0.5	0
153	<i>In-silico</i> study of the interactions between acylated glucagon like-peptide-1 analogues and the native receptor. Journal of Biomolecular Structure and Dynamics, 0, , 1-15.	2.0	2