List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2276472/publications.pdf Version: 2024-02-01

WEN CHEN

#	Article	IF	CITATIONS
1	Improved open-circuit voltage of CsPbI3 quantum dot solar cells by PMMA interlayer. Journal of Alloys and Compounds, 2022, 891, 161985.	2.8	6
2	Construction of a Bismuthene/CsPbBr ₃ Quantum Dot S-Scheme Heterojunction and Enhanced Photocatalytic CO ₂ Reduction. Journal of Physical Chemistry C, 2022, 126, 3087-3097.	1.5	16
3	Novel High-Performance and Low-Cost Electrochromic Prussian White Film. ACS Applied Materials & Interfaces, 2022, 14, 8157-8162.	4.0	14
4	COFâ€5/CoAlâ€LDH Nanocomposite Heterojunction for Enhanced Visibleâ€Lightâ€Driven CO ₂ Reduction. ChemSusChem, 2022, 15, .	3.6	10
5	Density Functional Investigation on α-MoO ₃ (100): Amines Adsorption and Surface Chemistry. ACS Sensors, 2022, 7, 1213-1221.	4.0	6
6	Polymer "Tapeâ€â€Assisted Ballâ€Milling Method Fabrication Fewâ€Atomicâ€Layered Bismuth for Improving K ⁺ /Na ⁺ Storage. Energy and Environmental Materials, 2021, 4, 421-427.	7.3	11
7	Berlin Green Framework-Based Gas Sensor for Room-Temperature and High-Selectivity Detection of Ammonia. Nano-Micro Letters, 2021, 13, 63.	14.4	21
8	PdOx decorated Co3O4 nanosheets-assembled hollow microcages for enhanced ethanol sensing performance. Sensors and Actuators B: Chemical, 2021, 333, 129583.	4.0	25
9	Thermally induced transitions and depolarization of Fe2O3 doped PMnS-PZN-PZT piezoelectric ceramics. Applied Physics A: Materials Science and Processing, 2021, 127, 1.	1.1	3
10	Significant SRS sensing behavior of hydrothermally silver decorated sandwiched-like vanadia (Ag–V2O5) nanosheets toward ethanol. Applied Physics A: Materials Science and Processing, 2021, 127, 1.	1.1	2
11	Enhancement of photocatalytic CO2 reduction for novel Cd0.2Zn0.8S@Ti3C2 (MXenes) nanocomposites. Journal of CO2 Utilization, 2021, 47, 101501.	3.3	35
12	A Three-Dimensional Surface Layer and a Composite Aphroid Layer Constructed by a Facile Rolling Method for High-Performance Li Metal Anodes. ACS Applied Energy Materials, 2021, 4, 8108-8116.	2.5	8
13	Low-coordination water Prussian white as cathode for high-performance potassium-ion batteries. Chinese Chemical Letters, 2021, 32, 2433-2437.	4.8	14
14	Efficient Photocatalytic CO ₂ Reduction by the Construction of Ti ₃ C ₂ /CsPbBr ₃ QD Composites. ACS Applied Energy Materials, 2021, 4, 9154-9165.	2.5	19
15	Cs ₂ AgInCl ₆ double perovskite quantum dots decorated with Ag nanoparticles for photocatalytic CO ₂ reduction. Sustainable Energy and Fuels, 2021, 5, 3598-3605.	2.5	21
16	Boosting the Electrochemical Performance of Li _{1.2} Ni _{0.13} Co _{0.13} Mn _{0.54} O ₂ by Rough Coating with the Superionic Conductor Li ₇ La ₃ Zr ₂ O ₁₂ . ACS Applied Materials & amp; Interfaces,	4.0	20
17	2021, 13, 54916-54923. High ammonia sensitive ability of novel Cu12Sb4S13 quantum dots@reduced graphene oxide nanosheet composites at room temperature. Chinese Chemical Letters, 2020, 31, 2109-2114.	4.8	10
18	Low-cost carbon materials as anode for high-performance potassium-ion batteries. Materials Letters, 2020, 262, 127147.	1.3	10

#	Article	IF	CITATIONS
19	Resistive-switching tunability with size-dependent all-inorganic zero-dimensional tetrahedrite quantum dots. Science China Materials, 2020, 63, 2497-2508.	3.5	3
20	Threeâ€Dimensional Hierarchical Framework Loaded with Lithiophilic Nanorod Arrays for Highâ€Performance Lithiumâ€Metal Anodes. ChemElectroChem, 2020, 7, 4201-4207.	1.7	3
21	Recent advances in 0D nanostructure-functionalized low-dimensional nanomaterials for chemiresistive gas sensors. Journal of Materials Chemistry C, 2020, 8, 7272-7299.	2.7	35
22	High-field nonlinear properties and characteristics of domain wall motion in Fe ₂ O ₃ doped PMnS-PZN-PZT ceramics. Ferroelectrics, 2020, 560, 110-122.	0.3	4
23	Low-cost lignite-derived hard carbon for high-performance sodium-ion storage. Journal of Materials Science, 2020, 55, 5994-6004.	1.7	7
24	Flexible electrochromic thin films with ultrafast responsion based on exfoliated V2O5 nanosheets/graphene oxide via layer-by-layer assembly. Applied Surface Science, 2020, 514, 145950.	3.1	23
25	N-Doped carbon coated bismuth nanorods with a hollow structure as an anode for superior-performance potassium-ion batteries. Nanoscale, 2020, 12, 4309-4313.	2.8	41
26	The electrochemical property and crystal structure of Li1+xNi0.45Co0.1Mn0.45O2 (0.05â‰ ¤ â‰ 0 .4) cathode materials under 4.6V cut-off. Journal of Alloys and Compounds, 2020, 831, 154489.	2.8	3
27	Cu ₁₂ Sb ₄ S ₁₃ Quantum Dots with Ligand Exchange as Hole Transport Materials in All-Inorganic Perovskite CsPbI ₃ Quantum Dot Solar Cells. ACS Applied Energy Materials, 2020, 3, 3521-3529.	2.5	29
28	Ordered mesoporous carbon-supported mono-dispersed Co and Ru–Co catalysts for low-temperature CO2 methanation. Functional Materials Letters, 2020, 13, 2051019.	0.7	1
29	The phase definition and electrochemical property of cobalt-oxide nanoclusters supported on structured carbons. Materials Letters, 2020, 271, 127788.	1.3	3
30	Three-dimensional hollow reduced graphene oxide spheres with a hierarchically porous structure for high-performance lithium–sulfur batteries. Inorganic Chemistry Frontiers, 2019, 6, 2528-2538.	3.0	7
31	Ag-functionalized exfoliated V2O5 nanosheets: a flexible and binder-free cathode for lithium-ion batteries. Journal of Materials Science, 2019, 54, 12713-12722.	1.7	19
32	Fabrication and electrochemical properties of well-dispersed molybdenum oxide nanoparticles into nitrogen-doped ordered mesoporous carbons for supercapacitors. Materials Research Express, 2019, 6, 105088.	0.8	3
33	Synthesis of monodispersed CoMoO4 nanoclusters on the ordered mesoporous carbons for environment-friendly supercapacitors. Journal of Alloys and Compounds, 2019, 810, 151841.	2.8	28
34	Bandgap aligned Cu ₁₂ Sb ₄ S ₁₃ quantum dots as efficient inorganic hole transport materials in planar perovskite solar cells with enhanced stability. Sustainable Energy and Fuels, 2019, 3, 831-840.	2.5	17
35	Controlling the growth of ultrathin MoS2 nanosheets/CdS nanoparticles by two-step solvothermal synthesis for enhancing photocatalytic activities under visible light. Applied Surface Science, 2019, 480, 1078-1088.	3.1	56
36	Shortâ€Chain Ligandâ€Passivated Stable αâ€CsPbl ₃ Quantum Dot for Allâ€Inorganic Perovskite Solar Cells. Advanced Functional Materials, 2019, 29, 1900991.	7.8	216

#	Article	IF	CITATIONS
37	Direct spectroscopic evidence on the photocatalytic activities of different ZnO crystal facets toward photo-induced decomposition of CH2O. Applied Surface Science, 2019, 478, 62-67.	3.1	12
38	Enhanced photocatalytic properties of TiO ₂ nanosheets@2D layered black phosphorus composite with high stability under hydro-oxygen environment. Nanoscale, 2019, 11, 5674-5683.	2.8	45
39	Acidic Site-Assisted Ammonia Sensing of Novel CuSbS ₂ Quantum Dots/Reduced Graphene Oxide Composites with an Ultralow Detection Limit at Room Temperature. ACS Applied Materials & Interfaces, 2019, 11, 9573-9582.	4.0	49
40	Sodium vanadate nanoflowers/rGO composite as a high-rate cathode material for sodium-ion batteries. Journal of Materials Science: Materials in Electronics, 2018, 29, 7032-7039.	1.1	7
41	Tunability of photo-catalytic selectivity of B-doped anatase TiO2 microspheres in the visible light. Dyes and Pigments, 2018, 156, 213-218.	2.0	22
42	ppb level ammonia detection of 3-D PbS quantum dots/reduced graphene oxide nanococoons at room temperature and Schottky barrier modulated behavior. Sensors and Actuators B: Chemical, 2018, 255, 2979-2987.	4.0	19
43	Surface Decorated Zn0.15Cd0.85S Nanoflowers with P25 for Enhanced Visible Light Driven Photocatalytic Degradation of Rh-B and Stability. Applied Sciences (Switzerland), 2018, 8, 327.	1.3	5
44	Surface reactions of CH3OH, NH3 and CO on ZnO nanorod arrays film: DFT investigation for gas sensing selectivity mechanism. Applied Surface Science, 2018, 457, 975-980.	3.1	21
45	Preparation of MoO2 nanoparticles/rGO nanocomposites and their high electrochemical properties for lithium ion batteries. Journal of Materials Science: Materials in Electronics, 2017, 28, 1740-1749.	1.1	10
46	Growth kinetics and mechanisms of multinary copper-based metal sulfide nanocrystals. Nanoscale, 2017, 9, 12470-12478.	2.8	26
47	Stabilization of Ferroelectric Order in Bi1/2(Na0.8K0.2)1/2TiO3 Lead-Free Ceramics with Fe Doping. Journal of Electronic Materials, 2017, 46, 6167-6174.	1.0	12
48	Manganese Oxide Nanoparticles Decorated Ordered Mesoporous Carbon Electrode for Capacitive Deionization of Brackish Water. Journal of the Electrochemical Society, 2017, 164, E505-E511.	1.3	28
49	Investigation on the Transformation of Absorbed Oxygen at ZnO {101ì0} Surface Based on a Novel Thermal Pulse Method and Density Functional Theory Simulation. ACS Sensors, 2017, 2, 1051-1059.	4.0	15
50	Mn doped CdS passivated CuInSe ₂ quantum dot sensitized solar cells with remarkably enhanced photovoltaic efficiency. RSC Advances, 2017, 7, 33106-33112.	1.7	16
51	Morphologies controllable synthesis of MoS2 by hot-injection method: from quantum dots to nanosheets. Journal of Materials Science: Materials in Electronics, 2017, 28, 13633-13637.	1.1	6
52	High sensitivity and good selectivity of ultralong MoO3 nanobelts for trimethylamine gas. Sensors and Actuators B: Chemical, 2016, 226, 478-485.	4.0	215
53	Influence of surface states of CuInS2 quantum dots in quantum dots sensitized photo-electrodes. Applied Surface Science, 2016, 388, 437-443.	3.1	12
54	A green synthesis route for the phase and size tunability of copper antimony sulfide nanocrystals with high yield. Nanoscale, 2016, 8, 5146-5152.	2.8	54

#	Article	IF	CITATIONS
55	Size-dependent photoluminescence dynamics of CuInS2 quantum dots and charge injection on titanium oxide film. Journal of Alloys and Compounds, 2016, 658, 76-84.	2.8	17
56	Size-Dependent Synthesis of Cu ₁₂ Sb ₄ S ₁₃ Nanocrystals with Bandgap Tunability. Particle and Particle Systems Characterization, 2015, 32, 999-1005.	1.2	35
57	Enhanced ultra-stable n-propylamine sensing behavior of V ₂ O ₅ /In ₂ 3 core–shell nanorods. RSC Advances, 2015, 5, 54412-54419.	1.7	21
58	CuInS2/Mn-CdS quantum dot co-sensitized flexible solar cells based on single fibrous TiO2 nanowire arrays. Journal of Materials Science: Materials in Electronics, 2015, 26, 2016-2024.	1.1	6
59	Synthesis of vanadium pentoxide nanoneedles by physical vapour deposition and their highly sensitive behavior towards acetone at room temperature. RSC Advances, 2015, 5, 23489-23497.	1.7	38
60	Enhanced gas sensing properties of V ₂ O ₅ nanowires decorated with SnO ₂ nanoparticles to ethanol at room temperature. RSC Advances, 2015, 5, 41050-41058.	1.7	47
61	Synthesis and electrochemical properties of ordered mesoporous carbon supported well-dispersed cobalt oxide nanoparticles for supercapacitor. Materials Research Bulletin, 2015, 64, 55-60.	2.7	16
62	ZnSe passivation layer for the efficiency enhancement of CuInS2 quantum dots sensitized solar cells. Journal of Alloys and Compounds, 2014, 587, 613-617.	2.8	29
63	Effect of polyethylene glycol on vanadium oxide nanotubes in lithium-ion batteries. Microelectronic Engineering, 2014, 127, 81-85.	1.1	15
64	Enhanced visible photocatalytic activity of Cu ₂ 0 nanocrystal/titanate nanobelt heterojunctions by a self-assembly process. RSC Advances, 2014, 4, 24363-24368.	1.7	21
65	Influence of interface combination of reduced graphene oxide/P25 composites on their visible photocatalytic performance. RSC Advances, 2014, 4, 43760-43765.	1.7	12
66	Fabrication of TiO2 nanotube arrays and their application in flexible dye-sensitized solar cells. RSC Advances, 2014, 4, 45592-45597.	1.7	14
67	Photoelectrochemical behavior of TiO2 nanorod arrays decorated with CuInS2 quantum dots. Applied Surface Science, 2014, 292, 514-519.	3.1	9
68	Efficiency enhancement of CuInS2 quantum dot sensitized TiO2 photo-anodes for solar cell applications. Chemical Physics Letters, 2013, 586, 85-90.	1.2	31
69	Synthesis of Various Sized CuInS ₂ Quantum Dots and Their Photovoltaic Properties as Sensitizers for TiO ₂ Photoanodes. European Journal of Inorganic Chemistry, 2012, 2012, 5239-5244.	1.0	42
70	Self-assembly of Pt nanocrystals/one-dimensional titanate nanobelts heterojunctions and their great enhancement of photocatalytic activities. CrystEngComm, 2011, 13, 5467.	1.3	22
71	Hydrothermal synthesis of porous TiO2 microspheres and their photocatalytic degradation of gaseous benzene. Chemical Engineering Journal, 2011, 170, 53-58.	6.6	48
72	Field emission properties of one-dimensional single CuO nanoneedle by in situ microscopy. Journal of Materials Science, 2010, 45, 3791-3796.	1.7	27

#	Article	IF	CITATIONS
73	Field Emission from V ₂ O ₅ · <i>n</i> H ₂ O Nanorod Arrays. Journal of Physical Chemistry C, 2008, 112, 2262-2265.	1.5	31
74	Synthesis and Field Emission Property of V2O5·nH2O Nanotube Arrays. Journal of Physical Chemistry C, 2007, 111, 8202-8205.	1.5	40