
Samantha S Wells

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2276445/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Harvest attributes and seed quality predict physiological maturity of pennycress. Industrial Crops and Products, 2022, 176, 114355.	5.2	8
2	Plant Breeding for Intercropping in Temperate Field Crop Systems: A Review. Frontiers in Plant Science, 2022, 13, 843065.	3.6	17
3	Maturity selection but not sowing date enhances soybean productivity and land use in a winter camelina–soybean relay system. Food and Energy Security, 2022, 11, .	4.3	9
4	Soybean Cyst Nematode Population Development and Its Effect on Pennycress in a Greenhouse Study. Journal of Nematology, 2022, 54, .	0.9	5
5	Legume Cover Crop Contributions to Ecological Nutrient Management in Upper Midwest Vegetable Systems. Frontiers in Sustainable Food Systems, 2022, 6, .	3.9	5
6	A process to enhance germination of a wild pennycress variety. Seed Science and Technology, 2022, , .	1.4	1
7	Alfalfa forage yield, milk yield, and nutritive value under intensive cutting. , 2022, 5, .		3
8	Acceptance of a Protein Concentrate from Alfalfa (Medicago sativa) by Yellow Perch (Perca) Tj ETQq0 0 0 rgBT /(Dverlock 1	0 Tf 50 462 ⁻
9	Apparent digestibility, fecal particle size, and mean retention time of reduced lignin alfalfa hay fed to horses. Journal of Animal Science, 2021, 99, .	0.5	2
10	Interseeded pennycress and camelina yield and influence on row crops. Agronomy Journal, 2021, 113, 2629-2647.	1.8	11
11	Desiccation of corn allows earlier direct seeding of winter camelina in the northern Corn Belt. Crop Science, 2021, 61, 2787-2797.	1.8	4
12	Alfalfa Established Successfully in Intercropping with Corn in the Midwest US. Agronomy, 2021, 11, 1676.	3.0	12
13	Comparison of plant feedstocks and methods to recover leaf proteins from wet fractionation of alfalfa for potential use in aquaculture, poultry, and livestock feeds _ 2021_4_e20184		4

Weather and landscape influences on pollinator visitation of flowering winter oilseeds (field) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 222 T $_{1.8}^{14}$

15	Relay and sequential cropping corn with winter oilseed crops in northern climates. Nutrient Cycling in Agroecosystems, 2020, 116, 195-203.	2.2	6
16	Soil Nitrogen in Response to Interseeded Cover Crops in Maize–Soybean Production Systems. Agronomy, 2020, 10, 1439.	3.0	9
17	Pennycress as a Cash Cover-Crop: Improving the Sustainability of Sweet Corn Production Systems. Agronomy, 2020, 10, 614.	3.0	12
18	Stem and leaf forage nutritive value and morphology of reduced lignin alfalfa. Agronomy Journal, 2020, 112, 406-417.	1.8	25

2

SAMANTHA S WELLS

#	Article	IF	CITATIONS
19	Yield tradeoffs and weed suppression in a winter annual oilseed relayâ€cropping system. Agronomy Journal, 2020, 112, 2485-2495.	1.8	17
20	Herbage mass, botanical composition, forage nutritive value, and preference of grass–legume pastures under horse grazing. Crop, Forage and Turfgrass Management, 2020, 6, e20032.	0.6	4
21	Establishing winter annual cover crops by interseeding into Maize and Soybean. Agronomy Journal, 2020, 112, 719-732.	1.8	27
22	Potassium Fertilization Affects Alfalfa Forage Yield, Nutritive Value, Root Traits, and Persistence. Agronomy Journal, 2019, 111, 2843-2852.	1.8	25
23	Management of pennycress as a winter annual cash cover crop. A review. Agronomy for Sustainable Development, 2019, 39, 1.	5.3	35
24	Cover crop potential of winter oilseed crops in the Northern U.S. Corn Belt. Archives of Agronomy and Soil Science, 2019, 65, 1845-1859.	2.6	7
25	Estimating alfalfa yield and nutritive value using remote sensing and air temperature. Field Crops Research, 2018, 222, 189-196.	5.1	28
26	Establishing the relationship of soil nitrogen immobilization to cereal rye residues in a mulched system. Plant and Soil, 2018, 426, 95-107.	3.7	34
27	Establishment and Function of Cover Crops Interseeded into Corn. Crop Science, 2018, 58, 863-873.	1.8	80
28	Legume Cover Crops and Tillage Impact Nitrogen Dynamics in Organic Corn Production. Agronomy Journal, 2018, 110, 1046-1057.	1.8	44
29	Winter camelina seed yield and quality responses to harvest time. Industrial Crops and Products, 2018, 124, 765-775.	5.2	32
30	Glucose and Insulin Response of Horses Grazing Alfalfa, Perennial Cool-Season Grass, and Teff Across Seasons. Journal of Equine Veterinary Science, 2018, 68, 33-38.	0.9	12
31	In situ validation of fungal N translocation to cereal rye mulches under no-till soybean production. Plant and Soil, 2017, 410, 153-165.	3.7	8
32	Yield and Economic Potential of Springâ€Planted, Pea–Barley Forage in Shortâ€5eason Corn Doubleâ€Crop Systems. Agronomy Journal, 2017, 109, 2486-2498.	1.8	3
33	Yield, Nutritive Value, and Preference of Annual Warmâ€Season Grasses Grazed by Horses. Agronomy Journal, 2017, 109, 2136-2148.	1.8	21
34	Yield, Nutritive Value, and Profitability of Direct-Seeded Annual Forages following Spring-Terminated Alfalfa. Agronomy Journal, 2017, 109, 2738-2748.	1.8	7
35	Hay Rakeâ€Type Effect on Ash and Forage Nutritive Values of Alfalfa Hay. Agronomy Journal, 2017, 109, 2163-2171.	1.8	4
36	Forage Accumulation and Nutritive Value of Reduced Lignin and Reference Alfalfa Cultivars. Agronomy Journal, 2017, 109, 2749-2761.	1.8	48

SAMANTHA S WELLS

#	Article	IF	CITATIONS
37	Yield Tradeoffs and Nitrogen between Pennycress, Camelina, and Soybean in Relay―and Doubleâ€Crop Systems. Agronomy Journal, 2017, 109, 2128-2135.	1.8	45
38	Planting Date Impacts on Soil Water Management, Plant Growth, and Weeds in Coverâ€Cropâ€Based Noâ€īill Corn Production. Agronomy Journal, 2016, 108, 162-170.	1.8	13
39	Horse Preference, Forage Yield, and Species Persistence of 12 Perennial Cool-Season Grass Mixtures Under Horse Grazing. Journal of Equine Veterinary Science, 2016, 36, 19-25.	0.9	15
40	Weed suppression and soybean yield in a no-till cover-crop mulched system as influenced by six rye cultivars. Renewable Agriculture and Food Systems, 2016, 31, 429-440.	1.8	24
41	A Survey Investigating Alfalfa Winter Injury in Minnesota and Wisconsin from the Winter of 2012â€⊋013. Forage and Grazinglands, 2014, 12, 1-7.	0.2	12
42	Cultural Strategies for Managing Weeds and Soil Moisture in Cover Crop Based No-Till Soybean Production. Weed Science, 2014, 62, 501-511.	1.5	26
43	Overcoming Weed Management Challenges in Cover Crop–Based Organic Rotational No-Till Soybean Production in the Eastern United States. Weed Technology, 2013, 27, 193-203.	0.9	168