
Vyacheslav Khavrus

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2276270/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Machine Learningâ€Enabled Smart Gas Sensing Platform for Identification of Industrial Gases. Advanced Intelligent Systems, 2022, 4, .	6.1	18
2	Highly sensitive room temperature ammonia gas sensor using pristine graphene: The role of biocompatible stabilizer. Carbon, 2021, 173, 262-270.	10.3	46
3	Effect of surfactant concentration on the morphology and thermoelectric power factor of PbTe nanostructures prepared by a hydrothermal route. Physica E: Low-Dimensional Systems and Nanostructures, 2021, 125, 114396.	2.7	6
4	Supramolecular Functionalized Pristine Graphene Utilizing a Bio-Compatible Stabilizer towards Ultra-Sensitive Ammonia Detection. Engineering Proceedings, 2021, 6, 14.	0.4	0
5	Tailoring the thermoelectric properties of Pb1-xSmxTe nanostructures via Sm doping. Intermetallics, 2020, 125, 106923.	3.9	4
6	Systematic Investigations of Annealing and Functionalization of Carbon Nanotube Yarns. Molecules, 2020, 25, 1144.	3.8	10
7	Boron-Doped Single-Walled Carbon Nanotubes with Enhanced Thermoelectric Power Factor for Flexible Thermoelectric Devices. ACS Applied Energy Materials, 2020, 3, 2556-2564.	5.1	25
8	Boron Doping of SWCNTs as a Way to Enhance the Thermoelectric Properties of Melt-Mixed Polypropylene/SWCNT Composites. Energies, 2020, 13, 394.	3.1	20
9	Optical and transport properties of few quintuple-layers of Bi2-xSbxSe3 nanoflakes synthesized by hydrothermal method. Journal of Alloys and Compounds, 2019, 804, 272-280.	5.5	8
10	Ammonia Plasma-Induced n-Type Doping of Semiconducting Carbon Nanotube Films: Thermoelectric Properties and Ambient Effects. ACS Applied Materials & Interfaces, 2019, 11, 21807-21814.	8.0	14
11	Resistance-heating of carbon nanotube yarns in different atmospheres. Carbon, 2018, 133, 232-238.	10.3	12
12	Toward Highly Sensitive and Energy Efficient Ammonia Gas Detection with Modified Single-Walled Carbon Nanotubes at Room Temperature. ACS Sensors, 2018, 3, 79-86.	7.8	106
13	Chemiresistive biosensors based on carbon nanotubes for label-free detection of DNA sequences derived from avian influenza virus H5N1. Sensors and Actuators B: Chemical, 2017, 249, 691-699.	7.8	52
14	Proton radiation effects on the optical properties of vertically aligned carbon nanotubes. , 2017, , .		0
15	Effect of Carbonâ€Based Materials on the Early Hydration of Tricalcium Silicate. Journal of the American Ceramic Society, 2016, 99, 2181-2196.	3.8	26
16	Tuning the morphology of ZnO nanostructure by in doping and the associated variation in electrical and optical properties. Ceramics International, 2015, 41, 10116-10124.	4.8	31
17	Surface properties of CNTs and their interaction with silica. Journal of Colloid and Interface Science, 2014, 413, 43-53.	9.4	40
18	Microstructural improvements of the gradient composite material Pr0.6Sr0.4Fe0.8Co0.2O3/Ce0.8Sm0.2O1.9 by employing vertically aligned carbon nanotubes. International Journal of Hydrogen Energy, 2014, 39, 4074-4080.	7.1	3

VYACHESLAV KHAVRUS

#	Article	IF	CITATIONS
19	Highly biocompatible superparamagnetic Ni nanoparticles dispersed in submicron-sized C spheres. Carbon, 2013, 63, 358-366.	10.3	26
20	Novel carbon nanotube composites by grafting reaction with water-compatible redox initiator system. Colloid and Polymer Science, 2013, 291, 699-708.	2.1	19
21	Superparamagnetic FeCo and FeNi Nanocomposites Dispersed in Submicrometer-Sized C Spheres. Journal of Physical Chemistry C, 2012, 116, 22509-22517.	3.1	37
22	A Comparative Study of Various Supported Catalysts on the Growth of Aligned Carbon Nanotube Forests on Aluminum Foils. Chemical Vapor Deposition, 2012, 18, 326-335.	1.3	8
23	Synthesis of superparamagnetic nanoparticles dispersed in spherically shaped carbon nanoballs. Journal of Nanoparticle Research, 2012, 14, 1.	1.9	14
24	Dispersion of carbon nanotubes and its influence on the mechanical properties of the cement matrix. Cement and Concrete Composites, 2012, 34, 1104-1113.	10.7	360
25	Geometry and the physics of seasons. Physics Education, 2012, 47, 680-692.	0.5	15
26	High-pressure catalytic chemical vapor deposition of ferromagnetic ruthenium-containing carbon nanostructures. Journal of Nanoparticle Research, 2012, 14, 1.	1.9	11
27	Application of Carbon Nanotubes Directly Grown on Aluminum Foils as Electric Double Layer Capacitor Electrodes. Chemical Vapor Deposition, 2012, 18, 53-60.	1.3	28
28	On the potential of long carbon nanotube forest for sensing gases and vapors. Physica E: Low-Dimensional Systems and Nanostructures, 2011, 43, 1199-1207.	2.7	9
29	Structural parameters of carbon nanotubes obtained by the chemical vapor decomposition of ethylene onto nickel nanoparticles deposited on basic supports. Theoretical and Experimental Chemistry, 2010, 46, 296-301.	0.8	6
30	Synthesis, characterization, and electrical properties of nitrogen-doped single-walled carbon nanotubes with different nitrogen content. Diamond and Related Materials, 2010, 19, 1199-1206.	3.9	74
31	Morphology, Structural Control, and Magnetic Properties of Carbon-Coated Nanoscaled NiRu Alloys. Journal of Physical Chemistry C, 2010, 114, 10745-10749.	3.1	32
32	Conditions of Simultaneous Growth and Separation of Single- and Multiwalled Carbon Nanotubes. Journal of Physical Chemistry C, 2010, 114, 843-848.	3.1	16
33	Introduction to solar motion geometry on the basis of a simple model. Physics Education, 2010, 45, 641-653.	0.5	22
34	Fractal analysis of carbon nanotube agglomerates obtained by chemical vapor decomposition of ethylene over nickel nanoparticles. Theoretical and Experimental Chemistry, 2009, 45, 103-107.	0.8	8
35	The synthesis of carbon coated Fe, Co and Ni nanoparticles and an examination of their magnetic properties. Carbon, 2009, 47, 2821-2828.	10.3	184
36	Chemical catalytic vapor deposition (CCVD) synthesis of carbon nanotubes by decomposition of ethylene on metal (Ni, Co, Fe) nanoparticles. Reaction Kinetics and Catalysis Letters, 2008, 93, 295-303.	0.6	15

#	Article	IF	CITATIONS
37	Morphology of carbon nanotubes, obtained by decomposition of ethylene on nickel nanoparticles at various rates of flow and concentration of C2H4. Theoretical and Experimental Chemistry, 2008, 44, 240-244.	0.8	10
38	Single-step synthesis of metal-coated well-aligned CNx nanotubes using an aerosol-technique. Carbon, 2007, 45, 2889-2896.	10.3	19
39	Catalytic synthesis of carbon nanotubes from ethylene in the presence of water vapor. Theoretical and Experimental Chemistry, 2006, 42, 234-238.	0.8	9
40	New coating materials for hydrocarbon discrimination using a multisensor system and gas chromatography. Theoretical and Experimental Chemistry, 2005, 41, 389-394.	0.8	4
41	The effect of oxygen on time-dependent bifurcations in the Belousov–Zhabotinsky oscillating chemical reaction in a batch. Physical Chemistry Chemical Physics, 2005, 7, 1680-1686.	2.8	7
42	Scalings of mixed-mode regimes in a simple polynomial three-variable model of nonlinear dynamical systems. Chaos, 2003, 13, 112-122.	2.5	3
43	Effect of NO, CO, and Cl2 on Mixed-Mode Regimes in the Belousovâ^'Zhabotinskyi Oscillating Chemical Reaction in a CSTR. Journal of Physical Chemistry A, 2002, 106, 2505-2511.	2.5	6
44	Macroscopically structured polymer formation governed by spatial patterns in the Belousov–Zhabotinsky reaction. Chemical Physics Letters, 2002, 363, 534-539.	2.6	3
45	Title is missing!. Kinetics and Catalysis, 2002, 43, 233-244.	1.0	13
46	Conditions for Mixed Mode Oscillations and Deterministic Chaos in Nonlinear Chemical Systems. Theoretical and Experimental Chemistry, 2002, 38, 301-307.	0.8	4
47	Title is missing!. Theoretical and Experimental Chemistry, 2002, 38, 375-380.	0.8	0
48	Determination of gases (NO, CO, Cl2) using mixed-mode regimes in the Belousov–Zhabotinskii oscillating chemical reaction. Talanta, 2000, 51, 935-947.	5.5	15
49	Potential of the analyte pulse perturbation technique for the determination of polyphenols based on the Belousov–Zhabotinskii reaction. Analyst, The, 2000, 125, 2118-2124.	3.5	21
50	Kinetic scheme for a ferroin-catalyzed belousov-zhabotinskii reaction with compound-period transient states. Theoretical and Experimental Chemistry, 1998, 34, 138-143.	0.8	2