
Celine Galvagnion

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2276230/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Solution conditions determine the relative importance of nucleation and growth processes in α-synuclein aggregation. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 7671-7676.	7.1	546
2	Lipid vesicles trigger α-synuclein aggregation by stimulating primary nucleation. Nature Chemical Biology, 2015, 11, 229-234.	8.0	532
3	Mutations associated with familial Parkinson's disease alter the initiation and amplification steps of α-synuclein aggregation. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 10328-10333.	7.1	252
4	Chemical properties of lipids strongly affect the kinetics of the membrane-induced aggregation of α-synuclein. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 7065-7070.	7.1	248
5	A natural product inhibits the initiation of α-synuclein aggregation and suppresses its toxicity. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E1009-E1017.	7.1	231
6	Ostwald's rule of stages governs structural transitions and morphology of dipeptide supramolecular polymers. Nature Communications, 2014, 5, 5219.	12.8	197
7	The Role of Lipids Interacting with α-Synuclein in the Pathogenesis of Parkinson's Disease. Journal of Parkinson's Disease, 2017, 7, 433-450.	2.8	193
8	Cholesterol catalyses AÎ ² 42 aggregation through a heterogeneous nucleation pathway in the presence of lipid membranes. Nature Chemistry, 2018, 10, 673-683.	13.6	186
9	α-Synuclein Senses Lipid Packing Defects and Induces Lateral Expansion of Lipids Leading to Membrane Remodeling. Journal of Biological Chemistry, 2013, 288, 20883-20895.	3.4	183
10	Direct Observation of Heterogeneous Amyloid Fibril Growth Kinetics via Two-Color Super-Resolution Microscopy. Nano Letters, 2014, 14, 339-345.	9.1	159
11	Targeting the Intrinsically Disordered Structural Ensemble of α-Synuclein by Small Molecules as a Potential Therapeutic Strategy for Parkinson's Disease. PLoS ONE, 2014, 9, e87133.	2.5	126
12	The inverted free energy landscape of an intrinsically disordered peptide by simulations and experiments. Scientific Reports, 2015, 5, 15449.	3.3	118
13	Conformational stability and folding mechanisms of dimeric proteins. Progress in Biophysics and Molecular Biology, 2008, 98, 61-84.	2.9	92
14	Multistep Inhibition of α-Synuclein Aggregation and Toxicity <i>in Vitro</i> and <i>in Vivo</i> by Trodusquemine. ACS Chemical Biology, 2018, 13, 2308-2319.	3.4	86
15	β-Synuclein suppresses both the initiation and amplification steps of α-synuclein aggregation via competitive binding to surfaces. Scientific Reports, 2016, 6, 36010.	3.3	65
16	C-terminal truncation of α-synuclein promotes amyloid fibril amplification at physiological pH. Chemical Science, 2018, 9, 5506-5516.	7.4	64
17	An engineered monomer binding-protein for $\hat{I}\pm$ -synuclein efficiently inhibits the proliferation of amyloid fibrils. ELife, 2019, 8, .	6.0	49
18	Lipid Dynamics and Phase Transition within α-Synuclein Amyloid Fibrils. Journal of Physical Chemistry	4.6	43

CELINE GALVAGNION

#	Article	IF	CITATIONS
19	Kinetic barriers to α-synuclein protofilament formation and conversion into mature fibrils. Chemical Communications, 2018, 54, 7854-7857.	4.1	31
20	The interplay between Glucocerebrosidase, α-synuclein and lipids in human models of Parkinson's disease. Biophysical Chemistry, 2021, 273, 106534.	2.8	31
21	Sphingolipid changes in Parkinson L444P <i>GBA</i> mutation fibroblasts promote α-synuclein aggregation. Brain, 2022, 145, 1038-1051.	7.6	30
22	Discovery of a small-molecule binder of the oncoprotein gankyrin that modulates gankyrin activity in the cell. Scientific Reports, 2016, 6, 23732.	3.3	28
23	Capillary flow experiments for thermodynamic and kinetic characterization of protein liquid-liquid phase separation. Nature Communications, 2021, 12, 7289.	12.8	27
24	Microfluidic Diffusion Platform for Characterizing the Sizes of Lipid Vesicles and the Thermodynamics of Protein–Lipid Interactions. Analytical Chemistry, 2018, 90, 3284-3290.	6.5	20
25	Folding and Association of Thermophilic Dimeric and Trimeric DsrEFH Proteins: Tm0979 and Mth1491. Biochemistry, 2009, 48, 2891-2906.	2.5	12
26	Production and initial structural characterization of the TM4TM5 helixâ€loopâ€helix domain of the translocator protein. Journal of Peptide Science, 2013, 19, 102-109.	1.4	3
27	Editorial: Amyloid-Membrane Interactions in Protein Misfolding Disorders: From Basic Mechanisms to Therapy. Frontiers in Cell and Developmental Biology, 2022, 10, 870791.	3.7	1