Zhiyong Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2276106/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effect of CeO2 nanoparticles on plant growth and soil microcosm in a soil-plant interactive system. Environmental Pollution, 2022, 300, 118938.	7.5	15
2	Impact of Albumin Pre-Coating on Gold Nanoparticles Uptake at Single-Cell Level. Nanomaterials, 2022, 12, 749.	4.1	7
3	Professor Zhifang Chai: Scientific Contributions and Achievements. Chinese Chemical Letters, 2022, , .	9.0	0
4	Application of nanomaterials in the treatment of rheumatoid arthritis. RSC Advances, 2021, 11, 7129-7137.	3.6	29
5	Effects of ceria nanoparticles and CeCl3 on growth, physiological and biochemical parameters of corn (Zea mays) plants grown in soil. NanoImpact, 2021, 22, 100311.	4.5	15
6	Comparative toxicity of rod-shaped nano-CeO2 and nano-CePO4 to lettuce. Metallomics, 2021, 13, .	2.4	4
7	Trp2 Peptide-Assembled Nanoparticles with Intrinsically Self-Chelating 64Cu Properties for PET Imaging Tracking and Dendritic Cell-Based Immunotherapy against Melanoma. ACS Applied Bio Materials, 2021, 4, 5707-5716.	4.6	9
8	Growing Rice (<i>Oryza sativa</i>) Aerobically Reduces Phytotoxicity, Uptake, and Transformation of CeO ₂ Nanoparticles. Environmental Science & Technology, 2021, 55, 8654-8664.	10.0	37
9	Nanoparticles Determination by Laser Ablation Inductively Coupled Plasma Mass Spectrometry. Journal of Nanoscience and Nanotechnology, 2021, 21, 5436-5442.	0.9	2
10	Elucidating the origin of the toxicity of nano-CeO2 to Chlorella pyrenoidosa: the role of specific surface area and chemical composition. Environmental Science: Nano, 2021, 8, 1701-1712.	4.3	9
11	Dissolution and Retention Process of CeO ₂ Nanoparticles in Soil with Dynamic Redox Conditions. Environmental Science & Technology, 2021, 55, 14649-14657.	10.0	8
12	用于ä,åë;~eŽ·æ²»ç——çš"é'†æºå,¦å‰,. Chinese Science Bulletin, 2021, , .	0.7	1
13	Effects of surface modification on toxicity of CeO2 nanoparticles to lettuce. NanoImpact, 2021, 24, 100364.	4.5	8
14	Radiolabeling of Nanomaterials: Advantages and Challenges. Frontiers in Toxicology, 2021, 3, 753316.	3.1	8
15	Deciphering the particle specific effects on metabolism in rat liver and plasma from ZnO nanoparticles versus ionic Zn exposure. Environment International, 2020, 136, 105437.	10.0	25
16	A comparative study on the accumulation, translocation and transformation of selenite, selenate, and SeNPs in a hydroponic-plant system. Ecotoxicology and Environmental Safety, 2020, 189, 109955.	6.0	70
17	Elucidating the origin of the surface functionalization - dependent bacterial toxicity of graphene nanomaterials: Oxidative damage, physical disruption, and cell autolysis. Science of the Total Environment, 2020, 747, 141546.	8.0	26
18	Intranasal exposure to ZnO nanoparticles induces alterations in cholinergic neurotransmission in rat brain. Nano Today, 2020, 35, 100977.	11.9	22

#	Article	IF	CITATIONS
19	Silica nanoparticles alleviate mercury toxicity <i>via</i> immobilization and inactivation of Hg(<scp>ii</scp>) in soybean (<i>Glycine max</i>). Environmental Science: Nano, 2020, 7, 1807-1817.	4.3	48
20	Nanomaterial Transformation: Nanomaterial Transformation in the Soil–Plant System: Implications for Food Safety and Application in Agriculture (Small 21/2020). Small, 2020, 16, 2070116.	10.0	1
21	Effects of Ceria Nanoparticles and CeCl ₃ on Plant Growth, Biological and Physiological Parameters, and Nutritional Value of Soil Grown Common Bean (<i>Phaseolus vulgaris</i>). Small, 2020, 16, e1907435.	10.0	29
22	Immobilization of mercury by nano-elemental selenium and the underlying mechanisms in hydroponic-cultured garlic plant. Environmental Science: Nano, 2020, 7, 1115-1125.	4.3	28
23	Harnessing perennial and indeterminant growth habits for ratoon cotton (<i>Gossypium</i> spp.) cropping. Ecosystem Health and Sustainability, 2020, 6, .	3.1	6
24	Graphene Oxide-Induced pH Alteration, Iron Overload, and Subsequent Oxidative Damage in Rice (<i>Oryza sativa</i> L.): A New Mechanism of Nanomaterial Phytotoxicity. Environmental Science & Technology, 2020, 54, 3181-3190.	10.0	42
25	Nanomaterial Transformation in the Soil–Plant System: Implications for Food Safety and Application in Agriculture. Small, 2020, 16, e2000705.	10.0	71
26	Genome-Wide Identification and Analysis of Class III Peroxidases in Allotetraploid Cotton (Gossypium) Tj ETQq0	00.rgBT /(2. 4	Overlock 10 T
27	Plant species-dependent transformation and translocation of ceria nanoparticles. Environmental Science: Nano, 2019, 6, 60-67.	4.3	46
28	Size-dependent toxicity of ThO2 nanoparticles to green algae Chlorella pyrenoidosa. Aquatic Toxicology, 2019, 209, 113-120.	4.0	32
29	<i>Bacillus subtilis</i> causes dissolution of ceria nanoparticles at the nano–bio interface. Environmental Science: Nano, 2019, 6, 216-223.	4.3	15
30	Elemental sulfur amendment enhance methylmercury accumulation in rice (Oryza sativa L.) grown in Hg mining polluted soil. Journal of Hazardous Materials, 2019, 379, 120701.	12.4	32
31	Influence of Surface Charge on the Phytotoxicity, Transformation, and Translocation of CeO ₂ Nanoparticles in Cucumber Plants. ACS Applied Materials & Interfaces, 2019, 11, 16905-16913.	8.0	45
32	Comparative study of core- and surface-radiolabeling strategies for the assembly of iron oxide nanoparticle-based theranostic nanocomposites. Nanoscale, 2019, 11, 5909-5913.	5.6	5
33	Effects of foliar applications of ceria nanoparticles and CeCl3 on common bean (Phaseolus vulgaris). Environmental Pollution, 2019, 250, 530-536.	7.5	37
34	Toxicity of Two Different Size Ceria Nanoparticles to Mice After Repeated Intranasal Instillation. Journal of Nanoscience and Nanotechnology, 2019, 19, 2474-2482.	0.9	8
35	Understanding Enhanced Microbial MeHg Production in Mining-Contaminated Paddy Soils under Sulfate Amendment: Changes in Hg Mobility or Microbial Methylators?. Environmental Science & Technology, 2019, 53, 1844-1852.	10.0	58
36	Synthesis, Photothermal Effect and Cytotoxicity of Fe ₃ O ₄ @Au Nanocomposites. Journal of Nanoscience and Nanotechnology, 2019, 19, 2467-2473.	0.9	6

#	Article	IF	CITATIONS
37	Evidence for molecular antagonistic mechanism between mercury and selenium in rice (Oryza sativa) Tj ETQq1 Elements in Medicine and Biology, 2018, 50, 435-440.	1 0.784314 3.0	rgBT /Overlo 20
38	Crystal structures of multicopper oxidase CueO G304K mutant: structural basis of the increased laccase activity. Scientific Reports, 2018, 8, 14252.	3.3	15
39	Comparative effects of nano and bulk-Fe3O4 on the growth of cucumber (Cucumis sativus). Ecotoxicology and Environmental Safety, 2018, 165, 547-554.	6.0	76
40	Phytotoxicity of Rare Earth Nanomaterials. , 2018, , 119-133.		0
41	Trophic Transfer and Transformation of CeO ₂ Nanoparticles along a Terrestrial Food Chain: Influence of Exposure Routes. Environmental Science & Technology, 2018, 52, 7921-7927.	10.0	49
42	Influence of phosphate on phytotoxicity of ceria nanoparticles in an agar medium. Environmental Pollution, 2017, 224, 392-399.	7.5	15
43	Phytotoxicity of CeO2 nanoparticles on radish plant (Raphanus sativus). Environmental Science and Pollution Research, 2017, 24, 13775-13781.	5.3	41
44	Influence of sulfur on the accumulation of mercury in rice plant (Oryza sativa L.) growing in mercury contaminated soils. Chemosphere, 2017, 182, 293-300.	8.2	68
45	Ceria Nanoparticles as Enzyme Mimetics. Chinese Journal of Chemistry, 2017, 35, 791-800.	4.9	40
46	Xylem and Phloem Based Transport of CeO ₂ Nanoparticles in Hydroponic Cucumber Plants. Environmental Science & Technology, 2017, 51, 5215-5221.	10.0	97
47	Toxicity and transformation of graphene oxide and reduced graphene oxide in bacteria biofilm. Science of the Total Environment, 2017, 580, 1300-1308.	8.0	97
48	Shape-Dependent Transformation and Translocation of Ceria Nanoparticles in Cucumber Plants. Environmental Science and Technology Letters, 2017, 4, 380-385.	8.7	44
49	Phytotoxicity, uptake and transformation of nano-CeO2 in sand cultured romaine lettuce. Environmental Pollution, 2017, 220, 1400-1408.	7.5	99
50	Influence of Speciation of Thorium on Toxic Effects to Green Algae Chlorella pyrenoidosa. International Journal of Molecular Sciences, 2017, 18, 795.	4.1	31
51	Magnetic (Fe3O4) Nanoparticles Reduce Heavy Metals Uptake and Mitigate Their Toxicity in Wheat Seedling. Sustainability, 2017, 9, 790.	3.2	217
52	Protein corona influences liver accumulation and hepatotoxicity of gold nanorods. NanoImpact, 2016, 3-4, 40-46.	4.5	27
53	Toxicity of cerium and thorium on Daphnia magna. Ecotoxicology and Environmental Safety, 2016, 134, 226-232.	6.0	40
54	Interactions Between Engineered Nanomaterials and Plants: Phytotoxicity, Uptake, Translocation, and		26

Biotransformation. , 2015, , 77-99.

#	Article	IF	CITATIONS
55	Transformation of ceria nanoparticles in cucumber plants is influenced by phosphate. Environmental Pollution, 2015, 198, 8-14.	7.5	84
56	Quantifying the dissolution of nanomaterials at the nano-bio interface. Science China Chemistry, 2015, 58, 761-767.	8.2	10
57	Quantifying the distribution of ceria nanoparticles in cucumber roots: the influence of labeling. RSC Advances, 2015, 5, 4554-4560.	3.6	18
58	Where Does the Transformation of Precipitated Ceria Nanoparticles in Hydroponic Plants Take Place?. Environmental Science & Technology, 2015, 49, 10667-10674.	10.0	82
59	Origin of the different phytotoxicity and biotransformation of cerium and lanthanum oxide nanoparticles in cucumber. Nanotoxicology, 2015, 9, 262-270.	3.0	123
60	Acquired Superoxideâ€ s cavenging Ability of Ceria Nanoparticles. Angewandte Chemie - International Edition, 2015, 54, 1832-1835.	13.8	179
61	Species-specific toxicity of ceria nanoparticles to <i>Lactuca</i> plants. Nanotoxicology, 2015, 9, 1-8.	3.0	106
62	Quantifying the total ionic release from nanoparticles after particle-cell contact. Environmental Pollution, 2015, 196, 194-200.	7.5	25
63	Fate and Phytotoxicity of CeO2 Nanoparticles on Lettuce Cultured in the Potting Soil Environment. PLoS ONE, 2015, 10, e0134261.	2.5	100
64	Comparative Pulmonary Toxicity of Two Ceria Nanoparticles with the Same Primary Size. International Journal of Molecular Sciences, 2014, 15, 6072-6085.	4.1	44
65	Effect of cerium oxide nanoparticles on asparagus lettuce cultured in an agar medium. Environmental Science: Nano, 2014, 1, 459-465.	4.3	108
66	Production of a gadolinium-loaded liquid scintillator for the Daya Bay reactor neutrino experiment. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2014, 763, 82-88.	1.6	68
67	Metabolism of Nanomaterials <i>in Vivo</i> : Blood Circulation and Organ Clearance. Accounts of Chemical Research, 2013, 46, 761-769.	15.6	424
68	Quantifying and Imaging Engineered Nanomaterials In Vivo: Challenges and Techniques. Small, 2013, 9, 1482-1491.	10.0	41
69	Pulmonary Toxicity of Ceria Nanoparticles in Mice After Intratracheal Instillation. Journal of Nanoscience and Nanotechnology, 2013, 13, 6575-6580.	0.9	9
70	A Cytotoxicity Study of Fluorescent Carbon Nanodots Using Human Bronchial Epithelial Cells. Journal of Nanoscience and Nanotechnology, 2013, 13, 5254-5259.	0.9	14
71	Distribution and bioavailability of ceria nanoparticles in an aquatic ecosystem model. Chemosphere, 2012, 89, 530-535.	8.2	35
72	Biotransformation of Ceria Nanoparticles in Cucumber Plants. ACS Nano, 2012, 6, 9943-9950.	14.6	319

#	Article	IF	CITATIONS
73	Comparative toxicity of nanoparticulate/bulk Yb ₂ O ₃ and YbCl ₃ to cucumber (<i>Cucumis sativus</i>). Environmental Science & Technology, 2012, 46, 1834-1841.	10.0	153
74	Changing exposure media can reverse the cytotoxicity of ceria nanoparticles for <i>Escherichia coli</i> . Nanotoxicology, 2012, 6, 233-240.	3.0	30
75	Acute toxic effects and genderâ€related biokinetics of silver nanoparticles following an intravenous injection in mice. Journal of Applied Toxicology, 2012, 32, 890-899.	2.8	136
76	Surface-bound humic acid increased Pb2+ sorption on carbon nanotubes. Environmental Pollution, 2012, 167, 138-147.	7.5	88
77	Effects of rare earth elements La and Yb on the morphological and functional development of zebrafish embryos. Journal of Environmental Sciences, 2012, 24, 209-213.	6.1	65
78	Adsorption and desorption characteristics of arsenic onto ceria nanoparticles. Nanoscale Research Letters, 2012, 7, 84.	5.7	60
79	Quantifying the biodistribution of nanoparticles. Nature Nanotechnology, 2011, 6, 755-755.	31.5	18
80	Uptake and distribution of ceria nanoparticles in cucumber plants. Metallomics, 2011, 3, 816.	2.4	226
81	Nano-CeO ₂ Exhibits Adverse Effects at Environmental Relevant Concentrations. Environmental Science & Technology, 2011, 45, 3725-3730.	10.0	257
82	β-Amyloid peptide increases levels of iron content and oxidative stress in human cell and Caenorhabditis elegans models of Alzheimer disease. Free Radical Biology and Medicine, 2011, 50, 122-129.	2.9	96
83	Effects of Lanthanum on Calcium and Magnesium Contents and Cytoplasmic Streaming of Internodal Cells of Chara corallina. Biological Trace Element Research, 2011, 143, 555-561.	3.5	8
84	Comparison Study on the Antibacterial Activity of Nano- or Bulk-Cerium Oxide. Journal of Nanoscience and Nanotechnology, 2011, 11, 4103-4108.	0.9	83
85	Phytotoxicity and biotransformation of La ₂ O ₃ nanoparticles in a terrestrial plant cucumber (<i>Cucumis sativus</i>). Nanotoxicology, 2011, 5, 743-753.	3.0	151
86	Measurement of 151Sm with the HI-13 accelerator mass spectrometry system. Nuclear Instruments & Methods in Physics Research B, 2010, 268, 1689-1691.	1.4	4
87	Toxicity of zinc oxide nanoparticles to zebrafish embryo: a physicochemical study of toxicity mechanism. Journal of Nanoparticle Research, 2010, 12, 1645-1654.	1.9	348
88	Effects of Copper Nanoparticles on the Development of Zebrafish Embryos. Journal of Nanoscience and Nanotechnology, 2010, 10, 8670-8676.	0.9	75
89	Bioavailability and Distribution and of Ceria Nanoparticles in Simulated Aquatic Ecosystems, Quantification with a Radiotracer Technique. Journal of Nanoscience and Nanotechnology, 2010, 10, 8658-8662.	0.9	12
90	Lung deposition and extrapulmonary translocation of nano-ceria after intratracheal instillation. Nanotechnology, 2010, 21, 285103.	2.6	137

#	Article	IF	CITATIONS
91	Metal Impurities Dominate the Sorption of a Commercially Available Carbon Nanotube for Pb(II) from Water. Environmental Science & Technology, 2010, 44, 8144-8149.	10.0	61
92	Effects of rare earth oxide nanoparticles on root elongation of plants. Chemosphere, 2010, 78, 273-279.	8.2	377
93	Ecotoxicological assessment of lanthanum with Caenorhabditis elegans in liquid medium. Metallomics, 2010, 2, 806.	2.4	42
94	Overexpression of Mitochondrial Ferritin Sensitizes Cells to Oxidative Stress Via an Iron-Mediated Mechanism. Antioxidants and Redox Signaling, 2009, 11, 1791-1803.	5.4	28
95	Applications of radiotracer techniques for the pharmacology and toxicology studies of nanomaterials. Science Bulletin, 2009, 54, 173-182.	9.0	17
96	Visible Light Response of Unintentionally Doped ZnO Nanowire Field Effect Transistors. Journal of Physical Chemistry C, 2009, 113, 16796-16801.	3.1	36
97	A new gadolinium-loaded liquid scintillator for reactor neutrino detection. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2008, 584, 238-243.	1.6	80
98	Direct measurement of lanthanum uptake and distribution in internodal cells of Chara. Plant Science, 2008, 174, 496-501.	3.6	22
99	Mapping technique for biodistribution of elements in a model organism, Caenorhabditis elegans, after exposure to copper nanoparticles with microbeam synchrotron radiation X-ray fluorescence. Journal of Analytical Atomic Spectrometry, 2008, 23, 1121.	3.0	75
100	Neurotoxicological Evaluation of Long-Term Lanthanum Chloride Exposure in Rats. Toxicological Sciences, 2008, 103, 354-361.	3.1	106
101	Unambiguous effects of lanthanum?. Toxicology Letters, 2007, 170, 94-96.	0.8	6
102	Ytterbium and trace element distribution in brain and organic tissues of offspring rats after prenatal and postnatal exposure to ytterbium. Biological Trace Element Research, 2007, 117, 89-104.	3.5	25
103	Uptake and elimination of lanthanum by excised roots of Triticum aestivum L Journal of Radioanalytical and Nuclear Chemistry, 2007, 272, 523-525.	1.5	2
104	Elemental distributions in rat olfactory bulbs after exposure to MnCl2 measured by synchrotron radiation X-ray fluorescence. Journal of Radioanalytical and Nuclear Chemistry, 2007, 272, 589-593.	1.5	0
105	Neurotoxicological consequence of long-term exposure to lanthanum. Toxicology Letters, 2006, 165, 112-120.	0.8	140
106	Isotopic Tracer Studies on the Metabolism and Functional Roles of Mineral Elements in Institute of High Energy Physics, China. Journal of Nuclear Science and Technology, 2006, 43, 450-454.	1.3	2
107	Effect of Iodine Supplement on Iodine Status and 5'-Deiodinase Activity in the Brain of Neonatal Rats with Iodine Deficiency. Biological Trace Element Research, 2006, 114, 207-216.	3.5	2
108	Long-term effects of lanthanum intake on the neurobehavioral development of the rat. Neurotoxicology and Teratology, 2006, 28, 119-124.	2.4	67

#	Article	IF	CITATIONS
109	Accumulation and Distribution of Samarium-153 in Rat Brain After Intraperitoneal Injection. Biological Trace Element Research, 2005, 104, 033-040.	3.5	12
110	Distribution of ytterbium-169 in rat brain after intravenous injection. Toxicology Letters, 2005, 155, 247-252.	0.8	32
111	Determination of extractable organic halogens in pine needles by neutron activation analysis. Journal of Radioanalytical and Nuclear Chemistry, 2004, 259, 129-134.	1.5	1
112	Overview of the methodology of nuclear analytical techniques for speciation studies of trace elements in the biological and environmental sciences. Analytical and Bioanalytical Chemistry, 2002, 372, 407-411.	3.7	20
113	Title is missing!. Journal of Radioanalytical and Nuclear Chemistry, 2002, 251, 437-441.	1.5	12
114	Preparation of186Re and188Re with high specific activity by the Szilard-Chalmers effect. Journal of Labelled Compounds and Radiopharmaceuticals, 2000, 43, 55-64.	1.0	5
115	Determination of rare earth elements in plant protoplasts by MAA. Science Bulletin, 2000, 45, 1497-1499.	1.7	9
116	REE bound DNA in natural plant. Science in China Series B: Chemistry, 1999, 42, 357-362.	0.8	14
117	Direct Labeling of Antibodies IgG with Rhenium-186 Using Sodium Glucoheptonate. Radiochimica Acta, 1997, 79, 105-108.	1.2	2