Fabrice Lavial

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2275804/publications.pdf Version: 2024-02-01

FARRICELAVIAL

#	Article	IF	CITATIONS
1	Netrin-1 promotes naive pluripotency through Neo1 and Unc5b co-regulation of Wnt and MAPK signalling. Nature Cell Biology, 2020, 22, 389-400.	10.3	24
2	Cellular Pliancy and the Multistep Process of Tumorigenesis. Cancer Cell, 2018, 33, 164-172.	16.8	79
3	Netrin-1 regulates somatic cell reprogramming and pluripotency maintenance. Nature Communications, 2015, 6, 7398.	12.8	34
4	Regulation by miR181 Family of the Dependence Receptor CDON Tumor Suppressive Activity in Neuroblastoma. Journal of the National Cancer Institute, 2014, 106, .	6.3	27
5	Pluripotent genes in avian stem cells. Development Growth and Differentiation, 2013, 55, 41-51.	1.5	16
6	Dependence receptor TrkC is a putative colon cancer tumor suppressor. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 3017-3022.	7.1	85
7	Ncoa3 functions as an essential Esrrb coactivator to sustain embryonic stem cell self-renewal and reprogramming. Genes and Development, 2012, 26, 2286-2298.	5.9	84
8	Bmi1 facilitates primitive endoderm formation by stabilizing Gata6 during early mouse development. Genes and Development, 2012, 26, 1445-1458.	5.9	21
9	MicroRNA Regulation of Cbx7 Mediates a Switch of Polycomb Orthologs during ESC Differentiation. Cell Stem Cell, 2012, 10, 33-46.	11.1	191
10	Astacinâ€like metalloâ€endopeptidase is dynamically expressed in embryonic stem cells and embryonic epithelium during morphogenesis. Developmental Dynamics, 2012, 241, 574-582.	1.8	10
11	Reprogramming capacity of Nanog is functionally conserved in vertebrates and resides in a unique homeodomain. Development (Cambridge), 2011, 138, 4853-4865.	2.5	69
12	Reprogramming capacity of Nanog is functionally conserved in vertebrates and resides in a unique homeodomain. Journal of Cell Science, 2011, 124, e1-e1.	2.0	0
13	Chicken embryonic stem cells as a nonâ€mammalian embryonic stem cell model. Development Growth and Differentiation, 2010, 52, 101-114.	1.5	36
14	Ring1B and Suv39h1 delineate distinct chromatin states at bivalent genes during early mouse lineage commitment. Development (Cambridge), 2010, 137, 2483-2492.	2.5	102
15	Role of miR-34c microRNA in the late steps of spermatogenesis. Rna, 2010, 16, 720-731.	3.5	239
16	Ectopic expression of Cvh (Chicken Vasa homologue) mediates the reprogramming of chicken embryonic stem cells to a germ cell fate. Developmental Biology, 2009, 330, 73-82.	2.0	62
17	The Oct4 homologue PouV and Nanog regulate pluripotency in chicken embryonic stem cells. Development (Cambridge), 2007, 134, 3549-3563.	2.5	175
18	Chicken Stem Cells as a Model to Generate Transgenic Chicken: Present and Perspectives. Journal of Poultry Science, 2006, 43, 313-322.	1.6	2