
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2275722/publications.pdf Version: 2024-02-01

Ιενιά' ΚΔ1/ατι

#	Article	IF	CITATIONS
1	Well-defined sub-nanometer graphene ribbons synthesized inside carbon nanotubes. Carbon, 2021, 171, 221-229.	5.4	23
2	Large intravalley scattering due to pseudo-magnetic fields in crumpled graphene. Npj 2D Materials and Applications, 2019, 3, .	3.9	16
3	Molecular Dynamics Simulation of Carbon Structures Inside Small Diameter Carbon Nanotubes. Physica Status Solidi (B): Basic Research, 2017, 254, 1700206.	0.7	3
4	The growth of new extended carbon nanophases from ferrocene inside singleâ€walled carbon nanotubes. Physica Status Solidi - Rapid Research Letters, 2017, 11, 1700158.	1.2	17
5	Doped carbon nanotubes as a model system of biased graphene. Physical Review B, 2017, 96, .	1.1	11
6	Preparing local strain patterns in graphene by atomic force microscope based indentation. Scientific Reports, 2017, 7, 3035.	1.6	24
7	Controlled Isotope Arrangement in ¹³ C Enriched Carbon Nanotubes. Journal of Physical Chemistry C, 2016, 120, 29520-29524.	1.5	5
8	Resonance Raman Optical Activity of Single Walled Chiral Carbon Nanotubes. Journal of Physical Chemistry A, 2016, 120, 5527-5538.	1.1	9
9	Towards improved exact exchange functionals relying onGWquasiparticle methods for parametrization. Physical Review B, 2015, 92, .	1.1	7
10	Raman spectra of hydrocarbons formed in carbon nanotubes - a theoretical study. Physica Status Solidi (B): Basic Research, 2015, 252, 2541-2545.	0.7	4
11	The origin of nondispersive Raman lines in the D-band region for ferrocene@HiPco SWCNTs transformed at high temperatures. Physica Status Solidi (B): Basic Research, 2015, 252, 2530-2535.	0.7	4
12	I-band-like non-dispersive inter-shell interaction induced Raman lines in the D-band region of double-walled carbon nanotubes. Applied Physics A: Materials Science and Processing, 2015, 118, 587-593.	1.1	3
13	Hydrocarbon chains and rings: bond length alternation in finite molecules. Theoretical Chemistry Accounts, 2015, 134, 1.	0.5	2
14	Stokes-anti-Stokes contribution to double resonance Raman processes in graphene. Physica Status Solidi (B): Basic Research, 2014, 251, 2525-2529.	0.7	2
15	Toward Synthesis and Characterization of Unconventional C ₆₆ and C ₆₈ Fullerenes inside Carbon Nanotubes. Journal of Physical Chemistry C, 2014, 118, 30260-30268.	1.5	6
16	Theoretical vibrational optical activity of chiral carbon nanoparticles: Fullerenes and carbon nanotubes. Physica Status Solidi (B): Basic Research, 2014, 251, 2451-2456.	0.7	6
17	Carbon nanobamboo: Junctions between left and right handed single walled carbon nanotubes. Physica Status Solidi (B): Basic Research, 2012, 249, 2652-2655.	0.7	0
18	Raman spectra of titanium dioxide (anatase, rutile) with identified oxygen isotopes (16, 17, 18). Physical Chemistry Chemical Physics, 2012, 14, 14567.	1.3	417

#	Article	IF	CITATIONS
19	Vibrational Signatures in the Infrared Spectra of Single- and Double-Walled Carbon Nanotubes and Their Diameter Dependence. Journal of Physical Chemistry Letters, 2011, 2, 2079-2082.	2.1	15
20	Oxygen-isotope labeled titania: Ti18O2. Physical Chemistry Chemical Physics, 2011, 13, 11583.	1.3	46
21	Density of states deduced from ESR measurements on lowâ€dimensional nanostructures; benchmarks to identify the ESR signals of graphene and SWCNTs. Physica Status Solidi (B): Basic Research, 2011, 248, 2688-2691.	0.7	16
22	Resonance Raman spectroscopy of graphite and graphene. Physica Status Solidi (B): Basic Research, 2011, 248, 2435-2444.	0.7	103
23	Enhanced NMR Relaxation of Tomonaga-Luttinger Liquids and the Magnitude of the Carbon Hyperfine Coupling in Single-Wall Carbon Nanotubes. Physical Review Letters, 2011, 107, 187204.	2.9	9
24	Functionalization of graphene with transition metals. Physica Status Solidi (B): Basic Research, 2010, 247, 2920-2923.	0.7	12
25	display= inline > <mml:mi>D</mml:mi> and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mn>2<mml:mi>D</mml:mi></mml:mn></mml:mrow>lines in high-curvature single-walled carbon nanotubes revealed by<mml:math< td=""><td>1.1</td><td>8</td></mml:math<></mml:math 	1.1	8
26	Characteristics of bamboo defects in peapod-grown double-walled carbon nanotubes. Physical Review B, 2010, 82, .	1.1	3
27	First Principles Study of the Binding of 4d and 5d Transition Metals to Graphene. Journal of Physical Chemistry C, 2010, 114, 18548-18552.	1.5	49
28	An Anomalous Enhancement of the Ag(2) Mode in the Resonance Raman Spectra of C60 Embedded in Single-Walled Carbon Nanotubes during Anodic Charging. Journal of Physical Chemistry C, 2010, 114, 2505-2511.	1.5	10
29	Singleâ€wall carbon nanotubes: spintronics in the Luttinger liquid phase. Physica Status Solidi (B): Basic Research, 2009, 246, 2744-2749.	0.7	0
30	Using line group theory for the symmetry assignment of the phonons of single walled carbon nanotubes. Physica Status Solidi (B): Basic Research, 2009, 246, 2614-2617.	0.7	4
31	Junctions of left―and rightâ€handed chiral carbon nanotubes – nanobamboo. Physica Status Solidi (B): Basic Research, 2009, 246, 2671-2674.	0.7	3
32	Identifying the electron spin resonance of conduction electrons in alkali doped SWCNTs. Physica Status Solidi (B): Basic Research, 2009, 246, 2760-2763.	0.7	15
33	Two component doping of fullerene–cubane cocrystals. Physica Status Solidi (B): Basic Research, 2009, 246, 2618-2621.	0.7	1
34	The electronic band structure of fullereneâ€cubane cocrystals. Physica Status Solidi (B): Basic Research, 2008, 245, 2018-2021.	0.7	3
35	Electron spin resonance in alkali doped SWCNTs. Physica Status Solidi (B): Basic Research, 2008, 245, 1975-1978.	0.7	10
36	Phonon dispersion of small diameter semiconducting chiral carbon nanotubes – a theoretical study. Physica Status Solidi (B): Basic Research, 2008, 245, 2137-2140.	0.7	8

#	Article	IF	CITATIONS
37	Theoretical study of the electronic structure and the totally symmetric vibrations of selected CoMoCat carbon nanotubes. Physica Status Solidi (B): Basic Research, 2008, 245, 2141-2144.	0.7	2
38	Fine tuning the charge transfer in carbon nanotubes via the interconversion of encapsulated molecules. Physical Review B, 2008, 77, .	1.1	79
39	In Situ Raman Spectroelectrochemistry of Single-Walled Carbon Nanotubes: Investigation of Materials Enriched with (6,5) Tubes. Journal of Physical Chemistry C, 2008, 112, 14179-14187.	1.5	22
40	Intershell interaction in double walled carbon nanotubes: Charge transfer and orbital mixing. Physical Review B, 2008, 77, .	1.1	61
41	Theoretical study of the electronic structure of fullerene-cubane cocrystals. Physical Review B, 2008, 78, .	1.1	9
42	Electron Spin Resonance Signal of Luttinger Liquids and Single-Wall Carbon Nanotubes. Physical Review Letters, 2008, 101, 106408.	2.9	35
43	Inhomogeneity ofC13isotope distribution in isotope engineered carbon nanotubes: Experiment and theory. Physical Review B, 2007, 75, .	1.1	21
44	Application of a Novel Linear/Exponential Hybrid Force Field Scaling Scheme to the Longitudinal Raman Active Mode of Polyyne. Journal of Physical Chemistry A, 2007, 111, 2434-2441.	1.1	56
45	The effects of inhomogeneous isotope distribution on the vibrational properties of isotope enriched double walled carbon nanotubes. Physica Status Solidi (B): Basic Research, 2007, 244, 4257-4260.	0.7	0
46	Curvature effects in the D* band of small diameter carbon nanotubes. Physica Status Solidi (B): Basic Research, 2007, 244, 4261-4264.	0.7	3
47	Semiconductor-to-metal transition of double walled carbon nanotubes induced by inter-shell interaction. Physica Status Solidi (B): Basic Research, 2006, 243, 3476-3479.	0.7	30
48	Tube–tube interaction in double-wall carbon nanotubes. Physica Status Solidi (B): Basic Research, 2006, 243, 3268-3272.	0.7	28
49	Double walled carbon nanotube with the smallest inner diameter: a first principles study. Physica Status Solidi (B): Basic Research, 2006, 243, 3464-3467.	0.7	3
50	The role of Van Hove singularities in disorder induced Raman scattering. AIP Conference Proceedings, 2005, , .	0.3	0
51	Linear carbon chain in the interior of a single walled carbon nanotube. AIP Conference Proceedings, 2005, , .	0.3	0
52	Heteronuclear carbon nanotubes. AIP Conference Proceedings, 2005, , .	0.3	0
53	Isotope Engineering of Carbon Nanotube Systems. Physical Review Letters, 2005, 95, 017401.	2.9	111
54	Bond-length alternation and charge transfer in a linear carbon chain encapsulated within a single-walled carbon nanotube. Physical Review B, 2005, 72, .	1.1	83

#	Article	IF	CITATIONS
55	Individualities and average behavior in the physical properties of small diameter single-walled carbon nanotubes. Carbon, 2004, 42, 971-978.	5.4	32
56	First-principles calculations for the electronic band structures of small diameter single-wall carbon nanotubes. Physical Review B, 2004, 70, .	1.1	136
57	Performance of the Vienna ab initio simulation package (VASP) in chemical applications. Computational and Theoretical Chemistry, 2003, 624, 37-45.	1.5	275
58	The geometry and the radial breathing mode of carbon nanotubes: beyond the ideal behaviour. New Journal of Physics, 2003, 5, 125-125.	1.2	154
59	Origin of the Fine Structure of the RamanDBand in Single-Wall Carbon Nanotubes. Physical Review Letters, 2003, 90, 157401.	2.9	52
60	Unusual High Degree of Unperturbed Environment in the Interior of Single-Wall Carbon Nanotubes. Physical Review Letters, 2003, 90, 225501.	2.9	158
61	Variations of the Geometries and Band Gaps of Single-Walled Carbon Nanotubes and the Effect of Charge Injection. Journal of Physical Chemistry B, 2003, 107, 6924-6931.	1.2	88
62	Dimensional change as a function of charge injection in graphite intercalation compounds: A density functional theory study. Physical Review B, 2003, 68, .	1.1	24
63	Dimensional changes as a function of charge injection for trans-polyacetylene: A density functional theory study. Journal of Chemical Physics, 2002, 117, 7691-7697.	1.2	19
64	Dimensional Changes as a Function of Charge Injection in Single-Walled Carbon Nanotubes. Journal of the American Chemical Society, 2002, 124, 15076-15080.	6.6	87
65	Double resonant Raman phenomena enhanced by van Hove singularities in single-wall carbon nanotubes. Physical Review B, 2002, 65, .	1.1	143
66	Low energy excitations in fullerene dimers and in single wall carbon nanotubes. Ferroelectrics, 2001, 249, 125-134.	0.3	2
67	Density functional study of the phase diagram of 3D C[sub 60]-polymers. AIP Conference Proceedings, 2000, , .	0.3	0
68	Periodic Resonance Excitation and Intertube Interaction from Quasicontinuous Distributed Helicities in Single-Wall Carbon Nanotubes. Physical Review Letters, 2000, 84, 1324-1327.	2.9	218
69	Scanning probe method investigation of carbon nanotubes produced by high energy ion irradiation of graphite. Carbon, 1999, 37, 739-744.	5.4	5
70	Resonance raman investigation of single wall carbon nanotubes. Synthetic Metals, 1999, 103, 2508-2509.	2.1	20
71	First-principles calculations of the radial breathing mode of single-wall carbon nanotubes. Physical Review B, 1998, 58, R8869-R8872.	1.1	294
72	Spectroscopic analysis of different types of single-wall carbon nanotubes. Europhysics Letters, 1998, 44, 518-524.	0.7	46

#	Article	IF	CITATIONS
73	Resonance Raman scattering of the radial breathing mode in single wall carbon nanotubes. , 1998, , .		Ο
74	On The Differences Between Neutral and Negatively Charged C60Dimers. Fullerenes, Nanotubes, and Carbon Nanostructures, 1997, 5, 429-442.	0.6	1
75	Spectroscopic studies of iron(III) complexes of D-saccharose and D-glucose in the solid state and in solution. Journal of Radioanalytical and Nuclear Chemistry, 1996, 209, 225-234.	0.7	10
76	Structure and energetics of neutral and negatively charged C60 dimers. Chemical Physics Letters, 1996, 256, 119-125.	1.2	63
77	Optical spectra of diels-alder adducts of C60. Synthetic Metals, 1995, 70, 1377-1378.	2.1	5
78	Vibrational analysis for short carbon chains with alternating and cumulenic structure. Synthetic Metals, 1995, 71, 1865-1866.	2.1	43
79	Reductive Preparation of Carbyne with High Yield. An in Situ Raman Scattering Study. Macromolecules, 1995, 28, 344-353.	2.2	134
80	Design of small gap conjugated polymers. Synthetic Metals, 1993, 57, 4338-4343.	2.1	36
81	Interpretation of the Raman spectra of polyisothianaphthene: Is the structure aromatic or quinonoid?. Synthetic Metals, 1993, 55, 564-569.	2.1	17
82	Effective conjugation coordinate model: An investigation of polythiophene and poly-isothianaphthene. Synthetic Metals, 1993, 57, 4266-4271.	2.1	15
83	Phase separation inKxC60(0â‰¤â‰ø) as obtained fromin situRaman spectroscopy. Physical Review B, 1992, 45, 13841-13844.	1.1	90
84	Searching for low-band-gap conjugated polymers by LHS calculations. Synthetic Metals, 1992, 50, 537-542.	2.1	4
85	Unified picture of three models for the resonance Raman effect in polyenes. Synthetic Metals, 1992, 50, 665-674.	2.1	4
86	Embedded units in conjugated polymers. Journal of Mathematical Chemistry, 1992, 10, 313-327.	0.7	7
87	Electronic transitions in KxC60 (0 â ©½ x â ©½ 6) from in situ absorption spectroscopy. Solid State Communications, 1992, 81, 859-862.	0.9	69
88	A comparative study of the resonance Raman effect in linear polyenes: Conjugation length model, GF-formalism and amplitude mode model. Synthetic Metals, 1991, 43, 3497-3500.	2.1	1
89	Electronic structure and optical absorption of poly(biisothianaphthene-methine) and poly(isonaphthothiophene-thiophene): two low-band-gap polymers. Journal of the American Chemical Society, 1991, 113, 9865-9867.	6.6	77
90	Optical anisotropy and resonance Raman scattering of poly(alkylthiophenes). Synthetic Metals, 1991, 41, 1251-1254.	2.1	5

#	Article	IF	CITATIONS
91	A simple, geometrical approach to the steady-state solution of the Bloch equations. Concepts in Magnetic Resonance, 1991, 3, 161-170.	1.3	7
92	Optical anisotropy and Raman scattering from highly oriented poly(octylthiophene) films. Physical Review B, 1991, 43, 4809-4819.	1.1	46
93	Resonance Raman scattering from finite and infinite polymer chains. Physical Review B, 1991, 44, 597-613.	1.1	63
94	Quinoid vs aromatic structure of polyisothianaphthene. Journal of Chemical Physics, 1990, 92, 3247-3248.	1.2	49
95	Preparative chemistry consequences on YBaCuO superconducting compounds. Physica C: Superconductivity and Its Applications, 1988, 153-155, 379-380.	0.6	17
96	High Tc superconductivity of a Tlî—,Baî—,Caî—,Cuî—,O compound. Physics Letters, Section A: General, Atomic and Solid State Physics, 1988, 130, 39-42.	0.9	18
97	Doping-induced luminescence in polyacetylene. Physical Review B, 1988, 38, 5634-5639.	1.1	5
98	The physical meaning of the conjugation length in polymers. Synthetic Metals, 1987, 21, 95-102.	2.1	28
99	Emission of secondary radiation from neutral and electrochemically doped polyacetylene. Synthetic Metals, 1987, 17, 301-306.	2.1	7
100	Kinetics of electrochemical n-doping of polyacetylene investigated by impedance and galvanostatic pulse measurements. Synthetic Metals, 1987, 21, 293-299.	2.1	3
101	Magnetic interaction between iron/III/ ions in its complexes of some sugar type ligands. Journal of Radioanalytical and Nuclear Chemistry, 1987, 118, 437-448.	0.7	7
102	Iron(III) complexes of sugar-type ligands. Inorganica Chimica Acta, 1986, 124, 55-59.	1.2	63
103	<i>g</i> â€Factor Anisotropy and Charge Transfer in Three Complex TCNQ Salts. Physica Status Solidi (B): Basic Research, 1980, 102, 639-645.	0.7	11
104	Nonlinear transport in Qn(TCNQ) ₂ . Physica Status Solidi (B): Basic Research, 1979, 94, 287-296.	0.7	22