Philippe Van Cappellen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/227552/publications.pdf Version: 2024-02-01

		9234	11581
221	20,326	74	135
papers	citations	h-index	g-index
231	231	231	17153
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	The ferrozine method revisited: Fe(II)/Fe(III) determination in natural waters. Applied Geochemistry, 2000, 15, 785-790.	1.4	1,086
2	Biogeochemical Redox Processes and their Impact on Contaminant Dynamics. Environmental Science & Technology, 2010, 44, 15-23.	4.6	1,037
3	Nutrient inputs to the coastal ocean through submarine groundwater discharge: controls and potential impact. Journal of Hydrology, 2004, 295, 64-86.	2.3	780
4	Surface catalysis of uranium(VI) reduction by iron(II). Geochimica Et Cosmochimica Acta, 1999, 63, 2939-2955.	1.6	574
5	A surface complexation model of the carbonate mineral-aqueous solution interface. Geochimica Et Cosmochimica Acta, 1993, 57, 3505-3518.	1.6	482
6	A new kinetic approach to modeling water-rock interaction: The role of nucleation, precursors, and Ostwald ripening. Geochimica Et Cosmochimica Acta, 1990, 54, 2657-2677.	1.6	477
7	Degradation of natural organic matter: A thermodynamic analysis. Geochimica Et Cosmochimica Acta, 2011, 75, 2030-2042.	1.6	447
8	Benthic phosphorus regeneration, net primary production, and ocean anoxia: A model of the coupled marine biogeochemical cycles of carbon and phosphorus. Paleoceanography, 1994, 9, 677-692.	3.0	413
9	Influence of water column anoxia on the burial and preservation of carbon and phosphorus in marine shales. Geochimica Et Cosmochimica Acta, 1993, 57, 303-316.	1.6	404
10	A multicomponent reactive transport model of early diagenesis: Application to redox cycling in coastal marine sediments. Geochimica Et Cosmochimica Acta, 1996, 60, 2993-3014.	1.6	336
11	Redox Stabilization of the Atmosphere and Oceans by Phosphorus-Limited Marine Productivity. Science, 1996, 271, 493-496.	6.0	328
12	Global phosphorus retention by river damming. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 15603-15608.	3.3	322
13	Plastic debris in the Laurentian Great Lakes: A review. Journal of Great Lakes Research, 2015, 41, 9-19.	0.8	300
14	Kinetic modeling of microbially-driven redox chemistry of subsurface environments: coupling transport, microbial metabolism and geochemistry. Journal of Hydrology, 1998, 209, 53-80.	2.3	288
15	Structure of peat soils and implications for water storage, flow and solute transport: A review update for geochemists. Chemical Geology, 2016, 429, 75-84.	1.4	278
16	Relation between sedimentation rate and burial of organic phosphorus and organic carbon in marine sediments. Geochimica Et Cosmochimica Acta, 1990, 54, 373-386.	1.6	266
17	Legacy nitrogen may prevent achievement of water quality goals in the Gulf of Mexico. Science, 2018, 360, 427-430.	6.0	262
18	Global perturbation of organic carbon cycling by river damming. Nature Communications, 2017, 8, 15347.	5.8	246

#	Article	IF	CITATIONS
19	Microbial reduction of iron(III) oxyhydroxides: effects of mineral solubility and availability. Chemical Geology, 2004, 212, 255-268.	1.4	242
20	Processes controlling solubility of biogenic silica and pore water build-up of silicic acid in marine sediments. Marine Chemistry, 2001, 73, 333-352.	0.9	236
21	Why is the Eastern Mediterranean phosphorus limited?. Progress in Oceanography, 2010, 85, 236-244.	1.5	232
22	Two centuries of nitrogen dynamics: Legacy sources and sinks in the Mississippi and Susquehanna River Basins. Global Biogeochemical Cycles, 2017, 31, 2-23.	1.9	199
23	Biogenic silica dissolution in sediments of the Southern Ocean. I. Solubility. Deep-Sea Research Part II: Topical Studies in Oceanography, 1997, 44, 1109-1128.	0.6	196
24	A global model for the early diagenesis of organic carbon and organic phosphorus in marine sediments. Geochimica Et Cosmochimica Acta, 1995, 59, 1259-1284.	1.6	187
25	Kinetics of microbial sulfate reduction in estuarine sediments. Geochimica Et Cosmochimica Acta, 2006, 70, 1148-1162.	1.6	179
26	Biogenic silica dissolution in sediments of the Southern Ocean. II. Kinetics. Deep-Sea Research Part II: Topical Studies in Oceanography, 1997, 44, 1129-1149.	0.6	177
27	Sorption of Arsenite, Arsenate, and Thioarsenates to Iron Oxides and Iron Sulfides: A Kinetic and Spectroscopic Investigation. Environmental Science & amp; Technology, 2013, 47, 5652-5659.	4.6	175
28	Biogenic silica dissolution in the oceans: Reconciling experimental and field-based dissolution rates. Global Biogeochemical Cycles, 2002, 16, 23-1-23-10.	1.9	173
29	The surface chemistry of divalent metal carbonate minerals; a critical assessment of surface charge and potential data using the charge distribution multi-site ion complexation model. Numerische Mathematik, 2008, 308, 905-941.	0.7	170
30	Quantitative analysis of anaerobic oxidation of methane (AOM) in marine sediments: A modeling perspective. Earth-Science Reviews, 2011, 106, 105-130.	4.0	159
31	Anthropogenic perturbations of the silicon cycle at the global scale: Key role of the landâ€ocean transition. Global Biogeochemical Cycles, 2009, 23, .	1.9	158
32	Silica Precipitation in Fractures and the Evolution of Permeability in Hydrothermal Upflow Zones. Science, 1993, 260, 192-194.	6.0	157
33	Atmospheric acidification of mineral aerosols: a source of bioavailable phosphorus for the oceans. Atmospheric Chemistry and Physics, 2011, 11, 6265-6272.	1.9	156
34	An authigenic iron phosphate phase in estuarine sediments: composition, formation and chemical reactivity. Marine Chemistry, 2004, 91, 227-251.	0.9	155
35	Solubility and dissimilatory reduction kinetics of iron(III) oxyhydroxides: A linear free energy relationship. Geochimica Et Cosmochimica Acta, 2009, 73, 5273-5282.	1.6	154
36	Title is missing!. Biogeochemistry, 2002, 60, 49-76.	1.7	146

#	Article	IF	CITATIONS
37	Dissolved inorganic carbon and alkalinity fluxes from coastal marine sediments: model estimates for different shelf environments and sensitivity to global change. Biogeosciences, 2013, 10, 371-398.	1.3	142
38	Dependence of calcite growth rate and Sr partitioning on solution stoichiometry: Non-Kossel crystal growth. Geochimica Et Cosmochimica Acta, 2007, 71, 2240-2249.	1.6	140
39	Fluorapatite crystal growth from modified seawater solutions. Geochimica Et Cosmochimica Acta, 1991, 55, 1219-1234.	1.6	139
40	The global marine phosphorus cycle: sensitivity to oceanic circulation. Biogeosciences, 2007, 4, 155-171.	1.3	134
41	Twelve testable hypotheses on the geobiology of weathering. Geobiology, 2011, 9, 140-165.	1.1	133
42	Reactive iron(III) in sediments: Chemical versus microbial extractions. Geochimica Et Cosmochimica Acta, 2006, 70, 4166-4180.	1.6	126
43	The legacy of surface mining: Remediation, restoration, reclamation and rehabilitation. Environmental Science and Policy, 2016, 66, 227-233.	2.4	126
44	Biogeochemical Cycles of Manganese and Iron at the Oxicâ^'Anoxic Transition of a Stratified Marine Basin (Orca Basin, Gulf of Mexico). Environmental Science & Technology, 1998, 32, 2931-2939.	4.6	122
45	Calcite growth kinetics: Modeling the effect of solution stoichiometry. Geochimica Et Cosmochimica Acta, 2012, 77, 121-134.	1.6	121
46	Nitrous oxide emissions from inland waters: Are IPCC estimates too high?. Global Change Biology, 2019, 25, 473-488.	4.2	119
47	Dissolution of biogenic silica from land to ocean: Role of salinity and pH. Limnology and Oceanography, 2008, 53, 1614-1621.	1.6	118
48	Competition between enzymatic and abiotic reduction of uranium(VI) under iron reducing conditions. Chemical Geology, 2005, 220, 315-327.	1.4	117
49	Managing nitrogen legacies to accelerate water quality improvement. Nature Geoscience, 2022, 15, 97-105.	5.4	112
50	Anaerobic oxidation of methane (AOM) in marine sediments from the Skagerrak (Denmark): II. Reaction-transport modeling. Geochimica Et Cosmochimica Acta, 2008, 72, 2880-2894.	1.6	111
51	Denitrification coupled to pyrite oxidation and changes in groundwater quality in a shallow sandy aquifer. Geochimica Et Cosmochimica Acta, 2009, 73, 6716-6726.	1.6	110
52	Organic matter mineralization in sediment of a coastal freshwater lake and response to salinization. Geochimica Et Cosmochimica Acta, 2006, 70, 2836-2855.	1.6	108
53	Rivers in the Anthropocene: Global scale modifications of riverine nutrient fluxes by damming. Ecohydrology and Hydrobiology, 2016, 16, 106-111.	1.0	107
54	Title is missing!. Biogeochemistry, 2003, 64, 179-203.	1.7	105

#	Article	IF	CITATIONS
55	Reductive dissolution of manganese(III, IV) (hydr)oxides by oxalate: the effect of pH and light. Langmuir, 1992, 8, 95-103.	1.6	104
56	Surface chemistry and reactivity of biogenic silica. Geochimica Et Cosmochimica Acta, 2002, 66, 2559-2568.	1.6	103
57	Quantitative interpretation of pH distributions in aquatic sediments: A reaction-transport modeling approach. Numerische Mathematik, 2005, 305, 919-956.	0.7	100
58	Modeling the impact of microbial activity on redox dynamics in porous media. Geochimica Et Cosmochimica Acta, 2005, 69, 5005-5019.	1.6	99
59	Arsenic Bioremediation by Biogenic Iron Oxides and Sulfides. Applied and Environmental Microbiology, 2013, 79, 4325-4335.	1.4	99
60	Silicon isotope fractionation during abiotic silica precipitation at low temperatures: Inferences from flow-through experiments. Geochimica Et Cosmochimica Acta, 2014, 142, 95-114.	1.6	93
61	Salt marsh pore water geochemistry does not correlate with microbial community structure. Estuarine, Coastal and Shelf Science, 2005, 62, 233-251.	0.9	88
62	Carbon geochemistry of cold seeps: Methane fluxes and transformation in sediments from Kazan mud volcano, eastern Mediterranean Sea. Earth and Planetary Science Letters, 2003, 212, 361-375.	1.8	86
63	Worldwide retention of nutrient silicon by river damming: From sparse data set to global estimate. Global Biogeochemical Cycles, 2014, 28, 842-855.	1.9	85
64	Potential rates and pathways of microbial nitrate reduction in coastal sediments. FEMS Microbiology Ecology, 2006, 58, 179-192.	1.3	83
65	Bioenergetic Controls on Anaerobic Oxidation of Methane (AOM) in Coastal Marine Sediments: A Theoretical Analysis. Numerische Mathematik, 2006, 306, 246-294.	0.7	83
66	Pyritization: a palaeoenvironmental and redox proxy reevaluated. Estuarine, Coastal and Shelf Science, 2003, 57, 1183-1193.	0.9	82
67	Surface complexation effects on phosphate adsorption to ferric iron oxyhydroxides along pH and salinity gradients in estuaries and coastal aquifers. Geochimica Et Cosmochimica Acta, 2008, 72, 3431-3445.	1.6	82
68	Water table fluctuations and soil biogeochemistry: An experimental approach using an automated soil column system. Journal of Hydrology, 2014, 509, 245-256.	2.3	81
69	Selenium as paleo-oceanographic proxy: A first assessment. Geochimica Et Cosmochimica Acta, 2012, 89, 302-317.	1.6	80
70	Aqueous cadmium uptake by calcite: a stirred flow-through reactor study. Geochimica Et Cosmochimica Acta, 2003, 67, 2763-2774.	1.6	79
71	Phylogenetic and physiological diversity of dissimilatory ferric iron reducers in sediments of the polluted Scheldt estuary, Northwest Europe. Environmental Microbiology, 2007, 9, 1956-1968.	1.8	78
72	Thermodynamic limitations on microbially catalyzed reaction rates. Geochimica Et Cosmochimica Acta, 2012, 90, 96-109.	1.6	78

#	Article	IF	CITATIONS
73	Modeling Microbially Induced Carbon Degradation in Redox-Stratified Subsurface Environments: Concepts and Open Questions. Geomicrobiology Journal, 2007, 24, 139-155.	1.0	77
74	Global estimates of enhanced solute transport in marine sediments. Limnology and Oceanography, 2003, 48, 777-786.	1.6	76
75	Quantifying bioirrigation in aquatic sediments: An inverse modeling approach. Limnology and Oceanography, 2001, 46, 164-177.	1.6	74
76	lsotopic and microbiological signatures of pyrite-driven denitrification in a sandy aquifer. Chemical Geology, 2012, 300-301, 123-132.	1.4	74
77	Selenium sorption and isotope fractionation: Iron(III) oxides versus iron(II) sulfides. Chemical Geology, 2013, 342, 21-28.	1.4	74
78	Sediment phosphorus speciation and mobility under dynamic redox conditions. Biogeosciences, 2017, 14, 3585-3602.	1.3	74
79	Reduction of Fe(III) colloids by Shewanella putrefaciens: A kinetic model. Geochimica Et Cosmochimica Acta, 2006, 70, 5842-5854.	1.6	73
80	Framboidal vaterite aggregates and their transformation into calcite: A morphological study. Journal of Crystal Growth, 2006, 287, 528-530.	0.7	73
81	Geochemistry of trace metals in a fresh water sediment: Field results and diagenetic modeling. Science of the Total Environment, 2007, 381, 263-279.	3.9	73
82	Microbiological and Geochemical Characterization of Microbial Fe(III) Reduction in Salt Marsh Sediments. Geomicrobiology Journal, 2000, 17, 163-178.	1.0	72
83	Biomineralization and Global Biogeochemical Cycles. Reviews in Mineralogy and Geochemistry, 2003, 54, 357-381.	2.2	71
84	Methane efflux from marine sediments in passive and active margins: Estimations from bioenergetic reaction–transport simulations. Earth and Planetary Science Letters, 2008, 265, 329-344.	1.8	71
85	A plug flow-through reactor for studying biogeochemical reactions in undisturbed aquatic sediments. Applied Geochemistry, 1998, 13, 269-280.	1.4	68
86	Direct Discharges of Domestic Wastewater are a Major Source of Phosphorus and Nitrogen to the Mediterranean Sea. Environmental Science & Technology, 2016, 50, 8722-8730.	4.6	67
87	Quantifying bioirrigation using ecological parameters: a stochastic approachâ€. Geochemical Transactions, 2002, 3, 1.	1.8	66
88	Potential nitrate removal in a coastal freshwater sediment (Haringvliet Lake, The Netherlands) and response to salinization. Water Research, 2007, 41, 3061-3068.	5.3	64
89	The use of flow-through sediment reactors in biogeochemical kinetics: Methodology and examples of applications. Marine Chemistry, 2007, 106, 256-271.	0.9	64
90	Reactivity of biogenic silica: Surface versus bulk charge density. Geochimica Et Cosmochimica Acta, 2010, 74, 517-530.	1.6	64

#	Article	IF	CITATIONS
91	Biosorption of metals (Cu2+, Zn2+) and anions (Fâ^', H2PO4â^') by viable and autoclaved cells of the Gram-negative bacterium Shewanella putrefaciens. Colloids and Surfaces B: Biointerfaces, 2008, 65, 126-133.	2.5	63
92	Agricultural soil denitrifiers possess extensive nitrite reductase gene diversity. Environmental Microbiology, 2017, 19, 1189-1208.	1.8	61
93	Reassessing the role of sulfur geochemistry on arsenic speciation in reducing environments. Journal of Hazardous Materials, 2011, 189, 647-652.	6.5	59
94	Modelling the geochemical fate and transport of wastewater-derived phosphorus in contrasting groundwater systems. Journal of Contaminant Hydrology, 2007, 92, 87-108.	1.6	57
95	Controls on the Recycling and Preservation of Biogenic Silica from Biomineralization to Burial. Silicon, 2012, 4, 7-22.	1.8	56
96	Solute-specific pore water irrigation: Implications for chemical cycling in early diagenesis. Journal of Marine Research, 2005, 63, 601-621.	0.3	55
97	Incorporating dormancy in dynamic microbial community models. Ecological Modelling, 2011, 222, 3092-3102.	1.2	55
98	Chapter 8. BIOGEOCHEMICAL DYNAMICS IN AQUATIC SEDIMENTS. , 1996, , 335-376.		54
99	Understanding the unique biogeochemistry of the Mediterranean Sea: Insights from a coupled phosphorus and nitrogen model. Global Biogeochemical Cycles, 2017, 31, 1010-1031.	1.9	54
100	Bioretention cells under cold climate conditions: Effects of freezing and thawing on water infiltration, soil structure, and nutrient removal. Science of the Total Environment, 2019, 649, 749-759.	3.9	54
101	Pore-scale controls on hydrological and geochemical processes in peat: Implications on interacting processes. Earth-Science Reviews, 2020, 207, 103227.	4.0	54
102	Reactive surface area control of the dissolution kinetics of biogenic silica in deep-sea sediments. Chemical Geology, 1996, 132, 125-130.	1.4	53
103	Effects of Damming on River Nitrogen Fluxes: A Global Analysis. Global Biogeochemical Cycles, 2019, 33, 1339-1357.	1.9	53
104	Seawater-mediated interactions between diatomaceous silica and terrigenous sediments: Results from long-term incubation experiments. Chemical Geology, 2010, 270, 68-79.	1.4	52
105	Comparative survey of potential nitrate and sulfate reduction rates in aquatic sediments. Geochimica Et Cosmochimica Acta, 2012, 77, 474-488.	1.6	52
106	Global Damâ€Ðriven Changes to Riverine N:P:Si Ratios Delivered to the Coastal Ocean. Geophysical Research Letters, 2020, 47, e2020GL088288.	1.5	52
107	Understanding and managing the re-eutrophication of Lake Erie: Knowledge gaps and research priorities. Freshwater Science, 2019, 38, 675-691.	0.9	51
108	Transformation of Hematite into Magnetite During Dissimilatory Iron Reduction—Conditions and Mechanisms. Geomicrobiology Journal, 2007, 24, 403-416.	1.0	49

#	Article	IF	CITATIONS
109	Non-Steady State Modeling of Arsenic Diagenesis in Lake Sediments. Environmental Science & Technology, 2010, 44, 197-203.	4.6	45
110	Arsenic binding to organic and inorganic sulfur species during microbial sulfate reduction: a sediment flow-through reactor experiment. Environmental Chemistry, 2013, 10, 285.	0.7	45
111	Non-steady state diagenesis of organic and inorganic sulfur in lake sediments. Geochimica Et Cosmochimica Acta, 2016, 194, 15-33.	1.6	45
112	Linking Spectral Induced Polarization (SIP) and Subsurface Microbial Processes: Results from Sand Column Incubation Experiments. Environmental Science & Technology, 2018, 52, 2081-2090.	4.6	45
113	What do acid-base titrations of live bacteria tell us? A preliminary assessment. Aquatic Sciences, 2004, 66, 19-26.	0.6	44
114	Acid–base activity of live bacteria: Implications for quantifying cell wall charge. Geochimica Et Cosmochimica Acta, 2006, 70, 267-276.	1.6	44
115	Effects of aqueous uranyl speciation on the kinetics of microbial uranium reduction. Geochimica Et Cosmochimica Acta, 2015, 157, 109-124.	1.6	44
116	Effects of temperature on rates and mineral products of microbial Fe(II) oxidation by Leptothrix cholodnii at microaerobic conditions. Geochimica Et Cosmochimica Acta, 2013, 108, 107-124.	1.6	42
117	Gibbs Energy Dynamic Yield Method (GEDYM): Predicting microbial growth yields under energy-limiting conditions. Geochimica Et Cosmochimica Acta, 2018, 241, 1-16.	1.6	42
118	Kinetics of microbially mediated reactions: dissimilatory sulfate reduction in saltmarsh sediments (Sapelo Island, Georgia, USA). Estuarine, Coastal and Shelf Science, 2003, 56, 1001-1010.	0.9	41
119	Oxygen Dependency of Neutrophilic Fe(II) Oxidation by <i>Leptothrix</i> Differs from Abiotic Reaction. Geomicrobiology Journal, 2012, 29, 550-560.	1.0	40
120	Phosphorus binding to soil organic matter via ternary complexes with calcium. Chemosphere, 2020, 260, 127624.	4.2	40
121	Sulfate reducing activity and sulfur isotope fractionation by natural microbial communities in sediments of a hypersaline soda lake (Mono Lake, California). Chemical Geology, 2010, 278, 23-30.	1.4	39
122	Distribution and Diversity of <i>Gallionella</i> -Like Neutrophilic Iron Oxidizers in a Tidal Freshwater Marsh. Applied and Environmental Microbiology, 2011, 77, 2337-2344.	1.4	37
123	Redox Stabilization of the Atmosphere and Oceans and Marine Productivity. Science, 1997, 275, 406-408.	6.0	35
124	The role of biologically-enhanced pore water transport in early diagenesis: An example from carbonate sediments in the vicinity of North Key Harbor, Dry Tortugas National Park, Florida. Journal of Marine Research, 2000, 58, 493-522.	0.3	32
125	Particle age distributions and O2exposure times: Timescales in bioturbated sediments. Global Biogeochemical Cycles, 2005, 19, .	1.9	32
126	Competitive Binding of Cu2+and Zn2+to Live Cells ofShewanella putrefaciens. Environmental Science & Technology, 2007, 41, 909-914.	4.6	32

#	Article	IF	CITATIONS
127	Vertical Distribution of Denitrification in an Estuarine Sediment: Integrating Sediment Flowthrough Reactor Experiments and Microprofiling via Reactive Transport Modeling. Applied and Environmental Microbiology, 2007, 73, 40-47.	1.4	31
128	Iron Isotope Fractionations Reveal a Finite Bioavailable Fe Pool for Structural Fe(III) Reduction in Nontronite. Environmental Science & Technology, 2016, 50, 8661-8669.	4.6	31
129	Kinetics of Substrate Biodegradation under the Cumulative Effects of Bioavailability and Self-Inhibition. Environmental Science & Technology, 2015, 49, 5529-5537.	4.6	30
130	Clacialâ€interglacial variations in marine phosphorus cycling: Implications for ocean productivity. Global Biogeochemical Cycles, 2008, 22, .	1.9	29
131	Coupling Water Column and Sediment Biogeochemical Dynamics: Modeling Internal Phosphorus Loading, Climate Change Responses, and Mitigation Measures in Lake VansjÃ, Norway. Journal of Geophysical Research G: Biogeosciences, 2019, 124, 3847-3866.	1.3	29
132	Beyond the Mass Balance: Watershed Phosphorus Legacies and the Evolution of the Current Water Quality Policy Challenge. Water Resources Research, 2021, 57, e2020WR029316.	1.7	29
133	Biogeochemical Transformations in Sediments: Kinetic Models of Early Diagenesis. , 1993, , 401-445.		29
134	Reactive transport modeling of early diagenesis in a reservoir lake affected by acid mine drainage: Trace metals, lake overturn, benthic fluxes and remediation. Chemical Geology, 2015, 419, 75-91.	1.4	28
135	Solute pools in Nikanotee Fen watershed in the Athabasca oil sands region. Environmental Pollution, 2017, 225, 150-162.	3.7	28
136	Circulation and oxygen cycling in the Mediterranean Sea: Sensitivity to future climate change. Journal of Geophysical Research: Oceans, 2016, 121, 8230-8247.	1.0	27
137	Microbial selenium sulfide reduction for selenium recovery from wastewater. Journal of Hazardous Materials, 2017, 329, 110-119.	6.5	27
138	Predicting benthic fluxes of silicic acid from deep-sea sediments. Journal of Geophysical Research, 2003, 108, .	3.3	26
139	The Cold Region Critical Zone in Transition: Responses to Climate Warming and Land Use Change. Annual Review of Environment and Resources, 2021, 46, 111-134.	5.6	26
140	Remote quantification of methane fluxes in gassy marine sediments through seismic survey. Geology, 2009, 37, 235-238.	2.0	25
141	Fate of Adsorbed U(VI) during Sulfidization of Lepidocrocite and Hematite. Environmental Science & Technology, 2017, 51, 2140-2150.	4.6	25
142	Comparative valuation of potential and realized ecosystem services in Southern Ontario, Canada. Environmental Science and Policy, 2019, 100, 105-112.	2.4	24
143	Iron isotope fractionation in sediments of an oligotrophic freshwater lake. Earth and Planetary Science Letters, 2015, 423, 164-172.	1.8	23
144	Reactive silicon dynamics in a large prairie reservoir (Lake Diefenbaker, Saskatchewan). Journal of Great Lakes Research, 2015, 41, 100-109.	0.8	23

#	Article	IF	CITATIONS
145	Geological evolution of the marine selenium cycle: Insights from the bulk shale δ82/76Se record and isotope mass balance modeling. Earth and Planetary Science Letters, 2016, 441, 178-187.	1.8	23
146	Changes in Sedimentary Phosphorus Burial Following Artificial Eutrophication of Lake 227, Experimental Lakes Area, Ontario, Canada. Journal of Geophysical Research G: Biogeosciences, 2020, 125, e2020JG005713.	1.3	23
147	A biogeochemical model for phosphorus and nitrogen cycling in the Eastern Mediterranean Sea. Journal of Marine Systems, 2014, 139, 420-432.	0.9	22
148	A diagnostic approach to constraining flow partitioning in hydrologic models using a multiobjective optimization framework. Water Resources Research, 2017, 53, 3279-3301.	1.7	22
149	Bioavailability of organic matter in a freshwater estuarine sediment: long-term degradation experiments with and without nitrate supply. Biogeochemistry, 2009, 94, 13-28.	1.7	21
150	34S/32S fractionation by sulfate-reducing microbial communities in estuarine sediments. Geochimica Et Cosmochimica Acta, 2011, 75, 3903-3914.	1.6	21
151	A biogeochemical model for phosphorus and nitrogen cycling in the Eastern Mediterranean Sea. Journal of Marine Systems, 2014, 139, 460-471.	0.9	21
152	A DNA-based biosensor for aqueous Hg(II): Performance under variable pH, temperature and competing ligand composition. Journal of Hazardous Materials, 2020, 385, 121572.	6.5	20
153	Metal Cycling in Surface Sediments: Modeling The Interplay of Transport and Reaction. , 2018, , 21-64.		20
154	Quantitative interpretation of pore water O2 and pH distributions in deep-sea sediments. Geochimica Et Cosmochimica Acta, 2008, 72, 1350-1364.	1.6	19
155	Sensing Coated Iron-Oxide Nanoparticles with Spectral Induced Polarization (SIP): Experiments in Natural Sand Packed Flow-Through Columns. Environmental Science & Technology, 2018, 52, 14256-14265.	4.6	19
156	Unique surface density layers promote formation of harmful algal blooms in the Pengxi River, Three Gorges Reservoir. Freshwater Science, 2020, 39, 722-734.	0.9	19
157	Sorption of benzene and naphthalene on (semi)-arid coastal soil as a function of salinity and temperature. Journal of Contaminant Hydrology, 2018, 219, 61-71.	1.6	18
158	Arsenic Oxidation by Flavin-Derived Reactive Species under Oxic and Anoxic Conditions: Oxidant Formation and pH Dependence. Environmental Science & Technology, 2019, 53, 10897-10905.	4.6	18
159	Deconstructing the redox cascade: what role do microbial exudates (flavins) play?. Environmental Chemistry, 2017, 14, 515.	0.7	18
160	Sulfidization of lepidocrocite and its effect on uranium phase distribution and reduction. Geochimica Et Cosmochimica Acta, 2014, 142, 570-586.	1.6	17
161	Biogeochemistry of Major Redox Elements and Mercury in a Tropical Reservoir Lake (Petit Saut, French) Tj ETQq1	1 0,78431 1.5	4.rgBT /Ove
162	Speciation dynamics of oxyanion contaminants (As, Sb, Cr) in argillaceous suspensions during	1.4	16

oxic-anoxic cycles. Applied Geochemistry, 2018, 91, 75-88.

#	Article	IF	CITATIONS
163	Direct Measurement of Aqueous Mercury(II): Combining DNA-Based Sensing with Diffusive Gradients in Thin Films. Environmental Science & Technology, 2020, 54, 13680-13689.	4.6	16
164	Agricultural phosphorus surplus trajectories for Ontario, Canada (1961–2016), and erosional export risk. Science of the Total Environment, 2022, 818, 151717.	3.9	16
165	Temperature, moisture and freeze–thaw controls on CO2 production in soil incubations from northern peatlands. Scientific Reports, 2021, 11, 23219.	1.6	16
166	Current State of Microplastic Pollution Research Data: Trends in Availability and Sources of Open Data. Frontiers in Environmental Science, 0, 10, .	1.5	16
167	Explicit representation of spatial heterogeneity in reactive transport models: application to bioirrigated sediments. Journal of Geochemical Exploration, 2003, 78-79, 231-234.	1.5	15
168	The Role of Pore Structure on Nitrate Reduction in Peat Soil: A Physical Characterization of Pore Distribution and Solute Transport. Wetlands, 2017, 37, 951-960.	0.7	15
169	Energetic scaling in microbial growth. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	14
170	228Ra, 226Ra, 224Ra and 223Ra in potential sources and sinks of land-derived material in the German Bight of the North Sea: implications for the use of radium as a tracer. Geo-Marine Letters, 2011, 31, 259-269.	0.5	13
171	Benthic nitrite exchanges in the Seine River (France): An early diagenetic modeling analysis. Science of the Total Environment, 2018, 628-629, 580-593.	3.9	13
172	The spatial and temporal distribution of metals in an urban stream: A case study of the Don River in Toronto, Canada. Journal of Great Lakes Research, 2018, 44, 1314-1326.	0.8	13
173	Oxidation of Fe(II) by Flavins under Anoxic Conditions. Environmental Science & Technology, 2020, 54, 11622-11630.	4.6	13
174	Shelf erosion and submarine river canyons: implications for deep-sea oxygenation and ocean productivity during glaciation. Biogeosciences, 2010, 7, 1973-1982.	1.3	12
175	Effect of pressure on silica solubility of diatom frustules in the oceans: Results from long-term laboratory and field incubations. Marine Chemistry, 2012, 136-137, 1-6.	0.9	12
176	Influence of dormancy on microbial competition under intermittent substrate supply: insights from model simulations. FEMS Microbiology Ecology, 2016, 92, fiw071.	1.3	12
177	Can Improved Flow Partitioning in Hydrologic Models Increase Biogeochemical Predictability?. Water Resources Research, 2019, 55, 2939-2960.	1.7	12
178	An analysis of the sample size requirements for acceptable statistical power in water quality monitoring for improvement detection. Ecological Indicators, 2020, 118, 106684.	2.6	12
179	Carbon turnover and microbial activity in an artificial soil under imposed cyclic drainage and imbibition. Vadose Zone Journal, 2020, 19, e20021.	1.3	12
180	Phosphorus retention and transformation in a dammed reservoir of the Thames River, Ontario: Impacts on phosphorus load and speciation. Journal of Great Lakes Research, 2022, 48, 84-96.	0.8	12

#	Article	IF	CITATIONS
181	Deployment of functional DNA-based biosensors for environmental water analysis. TrAC - Trends in Analytical Chemistry, 2022, 153, 116639.	5.8	12
182	Effect of Sorbed Fe(II) on the Initial Reduction Kinetics of 6-Line Ferrihydrite and Amorphous Ferric Phosphate by <i>Shewanella putrefaciens</i> . Geomicrobiology Journal, 2008, 25, 181-192.	1.0	11
183	Phosphate sorption from seawater solutions: Particle concentration effect. Marine Chemistry, 2013, 148, 52-62.	0.9	10
184	Model-Based Integration and Analysis of Biogeochemical and Isotopic Dynamics in a Nitrate-Polluted Pyritic Aquifer. Environmental Science & amp; Technology, 2013, 47, 130909083606007.	4.6	10
185	On the Role of a Large Shallow Lake (Lake St. Clair, USAâ€Canada) in Modulating Phosphorus Loads to Lake Erie. Water Resources Research, 2019, 55, 10548-10564.	1.7	10
186	Nutrient Cycling in the Mediterranean Sea: The Key to Understanding How the Unique Marine Ecosystem Functions and Responds to Anthropogenic Pressures. , 0, , .		9
187	Potential for Aerobic Methanotrophic Metabolism on Mars. Astrobiology, 2019, 19, 1187-1195.	1.5	9
188	Probing the charge of reactive sites at the mineral-water interface: Effect of ionic strength on crystal growth kinetics of fluorite. Geochimica Et Cosmochimica Acta, 1997, 61, 1871-1877.	1.6	8
189	12. Biomineralization and Global Biogeochemical Cycles. , 2003, , 357-382.		8
190	Phosphorus and nitrogen trajectories in the Mediterranean Sea (1950–2030): Diagnosing basin-wide anthropogenic nutrient enrichment. Progress in Oceanography, 2018, 162, 257-270.	1.5	8
191	Bacterial Stern layer diffusion: experimental determination with spectral induced polarization and sensitivity to nitrite toxicity. Near Surface Geophysics, 2019, 17, 623-635.	0.6	8
192	Sorption and Desorption of the Model Aromatic Hydrocarbons Naphthalene and Benzene: Effects of Temperature and Soil Composition. Frontiers in Environmental Chemistry, 2020, 1, .	0.7	8
193	Assessment of the impact of geogenic and climatic factors on global risk of urinary stone disease. Science of the Total Environment, 2020, 721, 137769.	3.9	8
194	Effects of pH and Dissolved Silicate on Phosphate Mineral-Water Partitioning with Goethite. ACS Earth and Space Chemistry, 2022, 6, 34-43.	1.2	7
195	A NEW IDEA IN MARSH CORING. Soil Science Society of America Journal, 2004, 68, 705-708.	1.2	6
196	Inoculating Bacteria into Polycyclic Aromatic Hydrocarbon-Contaminated Oil Sands Soil by Means of Electrokinetics. Water, Air, and Soil Pollution, 2016, 227, 1.	1.1	6
197	Selenium in buoyant marine debris biofilm. Marine Pollution Bulletin, 2019, 149, 110562.	2.3	6
198	Biodegradation Kinetics of Benzene and Naphthalene in the Vadose and Saturated Zones of a (Semi)-arid Saline Coastal Soil Environment. Geofluids, 2019, 2019, 1-15.	0.3	6

#	Article	IF	CITATIONS
199	Physical and chemical steady-state compaction in deep-sea sediments: Role of mineral reactions. Geochimica Et Cosmochimica Acta, 2010, 74, 3494-3513.	1.6	5
200	The role of groundwater discharge fluxes on Si:P ratios in a major tributary to Lake Erie. Science of the Total Environment, 2018, 622-623, 814-824.	3.9	5
201	Response to Comment on "Legacy nitrogen may prevent achievement of water quality goals in the Gulf of Mexico― Science, 2019, 365, .	6.0	5
202	Impact of Hydrofluoric Acid Treatment on Humic Acid Properties Extracted from Organic Soils and an Organic Amendment: A Technical Evaluation. Soil Science Society of America Journal, 2019, 83, 1219-1226.	1.2	5
203	Carbon release and transformation from coastal peat deposits controlled by submarine groundwater discharge: a column experiment study. Limnology and Oceanography, 2020, 65, 1116-1135.	1.6	5
204	Economic valuation of suspended sediment and phosphorus filtration services by four different wetland types: A preliminary assessment for southern Ontario, Canada. Hydrological Processes, 2021, 35, .	1.1	5
205	Incorporating ecological and biogeochemical information into irrigation models. Coastal and Estuarine Studies, 2005, , 341-358.	0.4	4
206	Incorporating geomicrobial processes in reactive transport models of subsurface environments. , 2005, , 109-125.		4
207	Acid–base activity of microorganisms. Journal of Geochemical Exploration, 2006, 88, 181-185.	1.5	4
208	Environmental Indicator Principium with Case References to Agricultural Soil, Water, and Air Quality and Modelâ€Derived Indicators. Journal of Environmental Quality, 2018, 47, 191-202.	1.0	4
209	Consecutive Fe redox cycles decrease bioreducible Fe(III) and Fe isotope fractionations by eliminating small clay particles. Geochimica Et Cosmochimica Acta, 2021, 308, 118-135.	1.6	4
210	Enhancement of Naphthalene Degradation by a Sequential Sulfate Injection Scenario in a (Semi)-Arid Coastal Soil: a Flow-Through Reactor Experiment. Water, Air, and Soil Pollution, 2020, 231, 1.	1.1	3
211	Evaluating phosphorous from vehicular emissions as a potential source of contamination to ground and surface water. Cogent Environmental Science, 2020, 6, .	1.6	3
212	Effects of dissolved organic phase composition and salinity on the engineered sulfate application in a flow-through system. Environmental Science and Pollution Research, 2020, 27, 11842-11854.	2.7	3
213	Ten Best Practices to Strengthen Stewardship and Sharing of Water Science Data in Canada. Hydrological Processes, 0, , e14385.	1.1	3
214	Effects of riboflavin and desferrioxamine B on Fe(II) oxidation by O2. Fundamental Research, 2022, 2, 208-217.	1.6	3
215	Organic Matter Degradation in Energy-Limited Subsurface Environments—A Bioenergetics-Informed Modeling Approach. Geomicrobiology Journal, 2022, 39, 1-16.	1.0	3
216	Biogenic silica dissolution in diatom aggregates: insights from reactive transport modelling. Marine Ecology - Progress Series, 2014, 517, 35-49.	0.9	2

#	Article	IF	CITATIONS
217	Land-use Drives Seasonal Riverine Si Cycling at the Landscape Scale. Procedia Earth and Planetary Science, 2014, 10, 133-138.	0.6	1
218	A new direction for the Journal of Hydrology. Journal of Hydrology, 1997, 199, 1-2.	2.3	0
219	Reply to â€~Comment on kinetic modeling of microbially-driven redox chemistry of subsurface environments: coupling transport, microbial metabolism and geochemistry' by J. Griffioen. Journal of Hydrology, 2000, 227, 292-294.	2.3	Ο
220	Chalcogen cycle science and technology. Journal of Hazardous Materials, 2011, 189, 623.	6.5	0
221	Denitrification coupled to pyrite oxidation and implications for groundwater quality. , 2007, , .		0