Sourabh Shukla

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2275390/publications.pdf

Version: 2024-02-01

46 papers 3,428 citations

32 h-index 223716 46 g-index

47 all docs

47 docs citations

47 times ranked

4086 citing authors

#	Article	IF	CITATIONS
1	Integrating plant molecular farming and materials research for next-generation vaccines. Nature Reviews Materials, 2022, 7, 372-388.	23.3	65
2	The $\langle i \rangle$ in vivo $\langle i \rangle$ fate of tobacco mosaic virus nanoparticle theranostic agents modified by the addition of a polydopamine coat. Biomaterials Science, 2021, 9, 7134-7150.	2.6	10
3	Tobacco mosaic virus for the targeted delivery of drugs to cells expressing prostate-specific membrane antigen. RSC Advances, 2021, 11, 20101-20108.	1.7	8
4	Cowpea Mosaic Virus Nanoparticle Vaccine Candidates Displaying Peptide Epitopes Can Neutralize the Severe Acute Respiratory Syndrome Coronavirus. ACS Infectious Diseases, 2021, 7, 3096-3110.	1.8	16
5	Builtâ€In Active Microneedle Patch with Enhanced Autonomous Drug Delivery. Advanced Materials, 2020, 32, e1905740.	11.1	160
6	Plant Viruses and Bacteriophage-Based Reagents for Diagnosis and Therapy. Annual Review of Virology, 2020, 7, 559-587.	3.0	25
7	COVID-19 vaccine development and a potential nanomaterial path forward. Nature Nanotechnology, 2020, 15, 646-655.	15.6	501
8	Active Microneedle Administration of Plant Virus Nanoparticles for Cancer In Situ Vaccination Improves Immunotherapeutic Efficacy. ACS Applied Nano Materials, 2020, 3, 8037-8051.	2.4	34
9	The unique potency of Cowpea mosaic virus (CPMV) <i>iin situ</i> i> cancer vaccine. Biomaterials Science, 2020, 8, 5489-5503.	2.6	42
10	Affinity of plant viral nanoparticle potato virus X (PVX) towards malignant B cells enables cancer drug delivery. Biomaterials Science, 2020, 8, 3935-3943.	2.6	21
11	Antibody Response against Cowpea Mosaic Viral Nanoparticles Improves <i>In Situ</i> Vaccine Efficacy in Ovarian Cancer. ACS Nano, 2020, 14, 2994-3003.	7.3	44
12	Cowpea Mosaic Virus (CPMV)-Based Cancer Testis Antigen NY-ESO-1 Vaccine Elicits an Antigen-Specific Cytotoxic T Cell Response. ACS Applied Bio Materials, 2020, 3, 4179-4187.	2.3	16
13	A Viral Nanoparticle Cancer Vaccine Delays Tumor Progression and Prolongs Survival in a HER2 ⁺ Tumor Mouse Model. Advanced Therapeutics, 2019, 2, 1800139.	1.6	25
14	Cowpea Mosaic Virus Immunotherapy Combined with Cyclophosphamide Reduces Breast Cancer Tumor Burden and Inhibits Lung Metastasis. Advanced Science, 2019, 6, 1802281.	5.6	50
15	Heterologous Prime-Boost Enhances the Antitumor Immune Response Elicited by Plant-Virus-Based Cancer Vaccine. Journal of the American Chemical Society, 2019, 141, 6509-6518.	6.6	55
16	Plant Virus-Like Particle In Situ Vaccine for Intracranial Glioma Immunotherapy. Cancers, 2019, 11, 515.	1.7	55
17	Cancer Theranostic Applications of Albumin-Coated Tobacco Mosaic Virus Nanoparticles. ACS Applied Materials & Samp; Interfaces, 2018, 10, 39468-39477.	4.0	45
18	In Planta Production of Fluorescent Filamentous Plant Virus-Based Nanoparticles. Methods in Molecular Biology, 2018, 1776, 61-84.	0.4	15

#	Article	IF	CITATIONS
19	Potato virus X, a filamentous plant viral nanoparticle for doxorubicin delivery in cancer therapy. Nanoscale, 2017, 9, 2348-2357.	2.8	108
20	Polymer Structure and Conformation Alter the Antigenicity of Virus-like Particle–Polymer Conjugates. Journal of the American Chemical Society, 2017, 139, 3312-3315.	6.6	70
21	Plant viral nanoparticles-based HER2 vaccine: Immune response influenced by differential transport, localization and cellular interactions of particulate carriers. Biomaterials, 2017, 121, 15-27.	5.7	88
22	Dysprosium-Modified Tobacco Mosaic Virus Nanoparticles for Ultra-High-Field Magnetic Resonance and Near-Infrared Fluorescence Imaging of Prostate Cancer. ACS Nano, 2017, 11, 9249-9258.	7.3	90
23	Biodegradable Viral Nanoparticle/Polymer Implants Prepared <i>via</i> Melt-Processing. ACS Nano, 2017, 11, 8777-8789.	7.3	47
24	Physalis Mottle Virus-Like Particles as Nanocarriers for Imaging Reagents and Drugs. Biomacromolecules, 2017, 18, 4141-4153.	2.6	63
25	Combination of Plant Virus Nanoparticle-Based in Situ Vaccination with Chemotherapy Potentiates Antitumor Response. Nano Letters, 2017, 17, 4019-4028.	4.5	77
26	POxylation as an alternative stealth coating for biomedical applications. European Polymer Journal, 2017, 88, 679-688.	2.6	81
27	The Protein Corona of Plant Virus Nanoparticles Influences their Dispersion Properties, Cellular Interactions, and In Vivo Fates. Small, 2016, 12, 1758-1769.	5.2	72
28	Nanomedicine: The Protein Corona of Plant Virus Nanoparticles Influences their Dispersion Properties, Cellular Interactions, and In Vivo Fates (Small 13/2016). Small, 2016, 12, 1682-1682.	5.2	4
29	Multiple Administrations of Viral Nanoparticles Alter <i>in Vivo</i> i> Behaviorâ€"Insights from Intravital Microscopy. ACS Biomaterials Science and Engineering, 2016, 2, 829-837.	2.6	17
30	Serum albumin â€~camouflage' of plant virus based nanoparticles prevents their antibody recognition and enhances pharmacokinetics. Biomaterials, 2016, 89, 89-97.	5 . 7	78
31	Emerging nanotechnologies for cancer immunotherapy. Experimental Biology and Medicine, 2016, 241, 1116-1126.	1.1	26
32	Tobacco Mosaic Virus Delivery of Phenanthriplatin for Cancer therapy. ACS Nano, 2016, 10, 4119-4126.	7.3	145
33	The Impact of Aspect Ratio on the Biodistribution and Tumor Homing of Rigid Softâ€Matter Nanorods. Advanced Healthcare Materials, 2015, 4, 874-882.	3.9	148
34	To Target or Not to Target: Active vs. Passive Tumor Homing of Filamentous Nanoparticles Based on Potato virus X. Cellular and Molecular Bioengineering, 2015, 8, 433-444.	1.0	34
35	Stealth filaments: Polymer chain length and conformation affect the in vivo fate of PEGylated potato virus X. Acta Biomaterialia, 2015, 19, 166-179.	4.1	79
36	Virusâ€based nanomaterials as positron emission tomography and magnetic resonance contrast agents: from technology development to translational medicine. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2015, 7, 708-721.	3.3	41

SOURABH SHUKLA

#	Article	lF	CITATIONS
37	Biodistribution and clearance of a filamentous plant virus in healthy and tumor-bearing mice. Nanomedicine, 2014, 9, 221-235.	1.7	56
38	Molecular farming of fluorescent virus-based nanoparticles for optical imaging in plants, human cells and mouse models. Biomaterials Science, 2014, 2, 784.	2.6	47
39	Presentation of HER2 epitopes using a filamentous plant virus-based vaccination platform. Journal of Materials Chemistry B, 2014, 2, 6249.	2.9	24
40	Titanium dioxide nanoparticle-induced oxidative stress triggers DNA damage and hepatic injury in mice. Nanomedicine, 2014, 9, 1423-1434.	1.7	132
41	Increased Tumor Homing and Tissue Penetration of the Filamentous Plant Viral Nanoparticle <i>Potato virus X</i> . Molecular Pharmaceutics, 2013, 10, 33-42.	2.3	139
42	CPMV-DOX Delivers. Molecular Pharmaceutics, 2013, 10, 3-10.	2.3	139
43	Viral Nanoparticles for In vivo Tumor Imaging. Journal of Visualized Experiments, 2012, , e4352.	0.2	30
44	Engineering of Brome mosaic virus for biomedical applications. RSC Advances, 2012, 2, 3670.	1.7	49
45	Interior Engineering of a Viral Nanoparticle and Its Tumor Homing Properties. Biomacromolecules, 2012, 13, 3990-4001.	2.6	94
46	Applications of viral nanoparticles in medicine. Current Opinion in Biotechnology, 2011, 22, 901-908.	3.3	260