## Jinqiang Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/227521/publications.pdf

Version: 2024-02-01

74 papers

8,401 citations

47409 49 h-index 90395 73
g-index

76 all docs

76
docs citations

76 times ranked 12472 citing authors

| #  | Article                                                                                                                                                                                                                    | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | A long-life lithium-oxygen battery via a molecular quenching/mediating mechanism. Science Advances, 2022, 8, eabm1899.                                                                                                     | 4.7  | 26        |
| 2  | MXene-Based Aerogel Anchored with Antimony Single Atoms and Quantum Dots for High-Performance Potassium-Ion Batteries. Nano Letters, 2022, 22, 1225-1232.                                                                  | 4.5  | 64        |
| 3  | Reaktionsmechanismen Lithiumâ€reicher Schichtâ€Kathodenmaterialien fÃ⅓r<br>Hochenergieâ€Lithiumâ€ionenbatterien. Angewandte Chemie, 2021, 133, 2236-2248.                                                                  | 1.6  | 4         |
| 4  | Reaction Mechanisms of Layered Lithiumâ€Rich Cathode Materials for Highâ€Energy Lithiumâ€Ion Batteries.<br>Angewandte Chemie - International Edition, 2021, 60, 2208-2220.                                                 | 7.2  | 170       |
| 5  | Nitronyl Nitroxide-Based Redox Mediators for Li-O2 Batteries. Journal of Physical Chemistry C, 2021, 125, 2824-2830.                                                                                                       | 1.5  | 10        |
| 6  | Phosphorus and Oxygen Dualâ€Doped Porous Carbon Spheres with Enhanced Reaction Kinetics as Anode<br>Materials for Highâ€Performance Potassiumâ€lon Hybrid Capacitors. Advanced Functional Materials, 2021,<br>31, 2102060. | 7.8  | 96        |
| 7  | Cobalt-embedded hierarchically-porous hollow carbon microspheres as multifunctional confined reactors for high-loading Li-S batteries. Nano Energy, 2021, 85, 105981.                                                      | 8.2  | 85        |
| 8  | Anchoring Sites Engineering in Singleâ€Atom Catalysts for Highly Efficient Electrochemical Energy Conversion Reactions. Advanced Materials, 2021, 33, e2102801.                                                            | 11.1 | 64        |
| 9  | Constructing Atomic Heterometallic Sites in Ultrathin Nickel-Incorporated Cobalt Phosphide<br>Nanosheets via a Boron-Assisted Strategy for Highly Efficient Water Splitting. Nano Letters, 2021, 21,<br>823-832.           | 4.5  | 91        |
| 10 | 2D Superlattices for Efficient Energy Storage and Conversion. Advanced Materials, 2020, 32, e1902654.                                                                                                                      | 11.1 | 117       |
| 11 | K <sub>2</sub> Ti <sub>2</sub> O <sub>5</sub> @C Microspheres with Enhanced K <sup>+</sup> Intercalation Pseudocapacitance Ensuring Fast Potassium Storage and Longâ€Term Cycling Stability. Small, 2020, 16, e1906131.    | 5.2  | 49        |
| 12 | Immunizing lithium metal anodes against dendrite growth using protein molecules to achieve high energy batteries. Nature Communications, 2020, $11$ , $5429$ .                                                             | 5.8  | 129       |
| 13 | Unraveling the Promotion Effects of a Soluble Cobaltocene Catalyst with Respect to Li–O <sub>2</sub> Battery Discharge. Journal of Physical Chemistry Letters, 2020, 11, 7028-7034.                                        | 2.1  | 14        |
| 14 | A Stable Conversion and Alloying Anode for Potassiumâ€lon Batteries: A Combined Strategy of Encapsulation and Confinement. Advanced Functional Materials, 2020, 30, 2001588.                                               | 7.8  | 104       |
| 15 | The antidepressant effects of asperosaponin VI are mediated by the suppression of microglial activation and reduction of TLR4/NF-κB-induced IDO expression. Psychopharmacology, 2020, 237, 2531-2545.                      | 1.5  | 22        |
| 16 | Boosting Sodium Storage in Two-Dimensional Phosphorene/Ti <sub>3</sub> C <sub>2</sub> T <sub><i>x</i></sub> MXene Nanoarchitectures with Stable Fluorinated Interphase. ACS Nano, 2020, 14, 3651-3659.                     | 7.3  | 155       |
| 17 | Strain engineering of two-dimensional multilayered heterostructures for beyond-lithium-based rechargeable batteries. Nature Communications, 2020, 11, 3297.                                                                | 5.8  | 134       |
| 18 | Dendrite-Free Sodium Metal Batteries Enabled by the Release of Contact Strain on Flexible and Sodiophilic Matrix. Nano Letters, 2020, 20, 6112-6119.                                                                       | 4.5  | 42        |

| #  | Article                                                                                                                                                                                                              | IF           | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------|
| 19 | TEMPO-Ionic Liquids as Redox Mediators and Solvents for Li–O <sub>2</sub> Batteries. Journal of Physical Chemistry C, 2020, 124, 5087-5092.                                                                          | 1.5          | 23        |
| 20 | Recent progress on flexible lithium metal batteries: Composite lithium metal anodes and solid-state electrolytes. Energy Storage Materials, 2020, 29, 310-331.                                                       | 9.5          | 63        |
| 21 | Interface Engineering of MXene Composite Separator for Highâ€Performance Li–Se and Na–Se Batteries.<br>Advanced Energy Materials, 2020, 10, 2000446.                                                                 | 10.2         | 94        |
| 22 | Maternal immune activation-induced PPAR $\hat{i}$ -dependent dysfunction of microglia associated with neurogenic impairment and aberrant postnatal behaviors in offspring. Neurobiology of Disease, 2019, 125, 1-13. | 2.1          | 57        |
| 23 | A versatile functionalized ionic liquid to boost the solution-mediated performances of lithium-oxygen batteries. Nature Communications, 2019, 10, 602.                                                               | 5 <b>.</b> 8 | 138       |
| 24 | Ultrathin Porous NiCo <sub>2</sub> O <sub>4</sub> Nanosheets for Lithium–Oxygen Batteries: An Excellent Performance Deriving from an Enhanced Solution Mechanism. ACS Applied Energy Materials, 2019, 2, 4215-4223.  | 2.5          | 18        |
| 25 | Interface Modulation of Two-Dimensional Superlattices for Efficient Overall Water Splitting. Nano Letters, 2019, 19, 4518-4526.                                                                                      | 4.5          | 191       |
| 26 | Porous Mo2C nanorods as an efficient catalyst for the hydrogen evolution reaction. Journal of Physics and Chemistry of Solids, 2019, 132, 230-235.                                                                   | 1.9          | 32        |
| 27 | Minocycline inhibits microglial activation and alleviates depressive-like behaviors in male adolescent mice subjected to maternal separation. Psychoneuroendocrinology, 2019, 107, 37-45.                            | 1.3          | 76        |
| 28 | A nitrogen, sulphur dual-doped hierarchical porous carbon with interconnected conductive polyaniline coating for high-performance sodium-selenium batteries. Energy Storage Materials, 2019, 19, 251-260.            | 9.5          | 60        |
| 29 | P doped MoS2 nanoplates embedded in nitrogen doped carbon nanofibers as an efficient catalyst for hydrogen evolution reaction. Journal of Colloid and Interface Science, 2019, 547, 291-298.                         | 5.0          | 33        |
| 30 | Squalene-derived sulfur-rich copolymer@ 3D graphene-carbon nanotube network cathode for high-performance lithium-sulfur batteries. Polyhedron, 2019, 162, 147-154.                                                   | 1.0          | 23        |
| 31 | Rational design of free-standing 3D porous MXene/rGO hybrid aerogels as polysulfide reservoirs for high-energy lithium–sulfur batteries. Journal of Materials Chemistry A, 2019, 7, 6507-6513.                       | 5.2          | 226       |
| 32 | Tuning the Coordination Environment in Single-Atom Catalysts to Achieve Highly Efficient Oxygen Reduction Reactions. Journal of the American Chemical Society, 2019, 141, 20118-20126.                               | 6.6          | 683       |
| 33 | Conformal carbon coating on WS2 nanotubes for excellent electrochemical performance of lithium-ion batteries. Nanotechnology, 2019, 30, 035401.                                                                      | 1.3          | 5         |
| 34 | Switching of the Microglial Activation Phenotype Is a Possible Treatment for Depression Disorder. Frontiers in Cellular Neuroscience, 2018, 12, 306.                                                                 | 1.8          | 214       |
| 35 | Two-Dimensional Unilamellar Cation-Deficient Metal Oxide Nanosheet Superlattices for High-Rate<br>Sodium Ion Energy Storage. ACS Nano, 2018, 12, 12337-12346.                                                        | 7.3          | 111       |
| 36 | Single platinum atoms immobilized on an MXene as an efficient catalyst for the hydrogen evolution reaction. Nature Catalysis, 2018, 1, 985-992.                                                                      | 16.1         | 1,236     |

| #  | Article                                                                                                                                                                                                                            | IF           | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------|
| 37 | Cobalt-doped MnO2 ultrathin nanosheets with abundant oxygen vacancies supported on functionalized carbon nanofibers for efficient oxygen evolution. Nano Energy, 2018, 54, 129-137.                                                | 8.2          | 182       |
| 38 | Aegis of Lithium-Rich Cathode Materials via Heterostructured LiAlF <sub>4</sub> Coating for High-Performance Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2018, 10, 33260-33268.                                     | 4.0          | 74        |
| 39 | Next-Generation Rechargeable Batteries: Challenges for Developing Rechargeable Room-Temperature Sodium Oxygen Batteries (Adv. Mater. Technol. 9/2018). Advanced Materials Technologies, 2018, 3, 1870035.                          | 3.0          | 2         |
| 40 | MXene encapsulated titanium oxide nanospheres for ultra-stable and fast sodium storage. Energy Storage Materials, 2018, 14, 306-313.                                                                                               | 9.5          | 119       |
| 41 | Dendriteâ€Free Sodiumâ€Metal Anodes for Highâ€Energy Sodiumâ€Metal Batteries. Advanced Materials, 2018, 30, e1801334.                                                                                                              | 11.1         | 267       |
| 42 | Entrapping polysulfides by using ultrathin hollow carbon sphere-functionalized separators in high-rate lithium-sulfur batteries. Journal of Materials Chemistry A, 2018, 6, 16610-16616.                                           | 5.2          | 76        |
| 43 | Challenges for Developing Rechargeable Roomâ€Temperature Sodium Oxygen Batteries. Advanced<br>Materials Technologies, 2018, 3, 1800110.                                                                                            | 3.0          | 29        |
| 44 | Modified Tetrathiafulvalene as an Organic Conductor for Improving Performances of Liâ°'O <sub>2</sub> Batteries. Angewandte Chemie - International Edition, 2017, 56, 8505-8509.                                                   | 7.2          | 90        |
| 45 | Modified Tetrathiafulvalene as an Organic Conductor for Improving Performances of Liâ°'O 2<br>Batteries. Angewandte Chemie, 2017, 129, 8625-8629.                                                                                  | 1.6          | 11        |
| 46 | 3D Interconnected Carbon Fiber Networkâ€Enabled Ultralong Life<br>Na <sub>3</sub> V <sub>2</sub> (PO <sub>4</sub> ) <sub>3</sub> @Carbon Paper Cathode for Sodiumâ€ion<br>Batteries. Small, 2017, 13, 1603318.                     | 5 <b>.</b> 2 | 72        |
| 47 | A multi-functional gel co-polymer bridging liquid electrolyte and solid cathode nanoparticles: An efficient route to Li–O 2 batteries with improved performance. Energy Storage Materials, 2017, 7, 1-7.                           | 9.5          | 30        |
| 48 | Fe <sub>3</sub> C@nitrogen doped CNT arrays aligned on nitrogen functionalized carbon nanofibers as highly efficient catalysts for the oxygen evolution reaction. Journal of Materials Chemistry A, 2017, 5, 19672-19679.          | 5.2          | 109       |
| 49 | Salvianolic acid B promotes microglial M2-polarization and rescues neurogenesis in stress-exposed mice. Brain, Behavior, and Immunity, 2017, 66, 111-124.                                                                          | 2.0          | 93        |
| 50 | Ruthenium decorated hierarchically ordered macro–mesoporous carbon for lithium oxygen batteries. Journal of Materials Chemistry A, 2016, 4, 9774-9780.                                                                             | 5.2          | 42        |
| 51 | Electrospun cobalt embedded porous nitrogen doped carbon nanofibers as an efficient catalyst for water splitting. Journal of Materials Chemistry A, 2016, 4, 12818-12824.                                                          | 5.2          | 87        |
| 52 | The antidepressant-like effects of pioglitazone in a chronic mild stress mouse model are associated with PPARI <sup>3</sup> -mediated alteration of microglial activation phenotypes. Journal of Neuroinflammation, 2016, 13, 259. | 3.1          | 103       |
| 53 | Organic sodium terephthalate@graphene hybrid anode materials for sodium-ion batteries. RSC Advances, 2016, 6, 57098-57102.                                                                                                         | 1.7          | 49        |
| 54 | A Bifunctional Organic Redox Catalyst for Rechargeable Lithium–Oxygen Batteries with Enhanced Performances. Advanced Science, 2016, 3, 1500285.                                                                                    | 5.6          | 37        |

| #  | Article                                                                                                                                                                                                                    | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Phenotypic dysregulation of microglial activation in young offspring rats with maternal sleep deprivation-induced cognitive impairment. Scientific Reports, 2015, 5, 9513.                                                 | 1.6  | 70        |
| 56 | MoS <sub>2</sub> Nanosheets Supported on 3D Graphene Aerogel as a Highly Efficient Catalyst for Hydrogen Evolution. Chemistry - A European Journal, 2015, 21, 15908-15913.                                                 | 1.7  | 99        |
| 57 | Frontispiece: MoS <sub>2</sub> Nanosheets Supported on 3D Graphene Aerogel as a Highly Efficient Catalyst for Hydrogen Evolution. Chemistry - A European Journal, 2015, 21, .                                              | 1.7  | O         |
| 58 | Enhancement of stability for lithium oxygen batteries by employing electrolytes gelled by poly(vinylidene fluoride-co-hexafluoropropylene) and tetraethylene glycol dimethyl ether. Electrochimica Acta, 2015, 183, 56-62. | 2.6  | 58        |
| 59 | A comparative investigation on the effects of nitrogen-doping into graphene on enhancing the electrochemical performance of SnO <sub>2</sub> /graphene for sodium-ion batteries. Nanoscale, 2015, 7, 3164-3172.            | 2.8  | 130       |
| 60 | MoS <sub>2</sub> /Graphene Composite Anodes with Enhanced Performance for Sodium″on Batteries: The Role of the Twoâ€Dimensional Heterointerface. Advanced Functional Materials, 2015, 25, 1393-1403.                       | 7.8  | 657       |
| 61 | Sn@CNT nanopillars grown perpendicularly on carbon paper: A novel free-standing anode for sodium ion batteries. Nano Energy, 2015, 13, 208-217.                                                                            | 8.2  | 185       |
| 62 | Polypyrrole hollow nanospheres: stable cathode materials for sodium-ion batteries. Chemical Communications, 2015, 51, 16092-16095.                                                                                         | 2.2  | 68        |
| 63 | SnS <sub>2</sub> Nanoplatelet@Graphene Nanocomposites as Highâ€Capacity Anode Materials for Sodium″on Batteries. Chemistry - an Asian Journal, 2014, 9, 1611-1617.                                                         | 1.7  | 166       |
| 64 | Batteries: 3D Hyperbranched Hollow Carbon Nanorod Architectures for High-Performance Lithium-Sulfur Batteries (Adv. Energy Mater. 8/2014). Advanced Energy Materials, 2014, 4, n/a-n/a.                                    | 10.2 | 2         |
| 65 | Synthesis of Singleâ€Crystalline Spinel LiMn <sub>2</sub> O <sub>4</sub> Nanorods for Lithiumâ€ion<br>Batteries with High Rate Capability and Long Cycle Life. Chemistry - A European Journal, 2014, 20,<br>17125-17131.   | 1.7  | 32        |
| 66 | 3D Hyperbranched Hollow Carbon Nanorod Architectures for Highâ€Performance Lithiumâ€Sulfur Batteries. Advanced Energy Materials, 2014, 4, 1301761.                                                                         | 10.2 | 154       |
| 67 | Multi-shelled hollow carbon nanospheres for lithium–sulfur batteries with superior performances.<br>Journal of Materials Chemistry A, 2014, 2, 16199-16207.                                                                | 5.2  | 116       |
| 68 | An optimized LiNO3/DMSO electrolyte for high-performance rechargeable Li–O2 batteries. RSC Advances, 2014, 4, 11115.                                                                                                       | 1.7  | 60        |
| 69 | Microwave-assisted synthesis of spherical $\hat{l}^2$ -Ni(OH) 2 superstructures for electrochemical capacitors with excellent cycling stability. Chemical Physics Letters, 2014, 610-611, 115-120.                         | 1.2  | 25        |
| 70 | Hierarchical macroporous/mesoporous NiCo <sub>2</sub> O <sub>4</sub> nanosheets as cathode catalysts for rechargeable Li–O <sub>2</sub> batteries. Journal of Materials Chemistry A, 2014, 2, 12053.                       | 5.2  | 82        |
| 71 | Porous poly(vinylidene fluoride-co-hexafluoropropylene) polymer membrane with sandwich-like architecture for highly safe lithium ion batteries. Journal of Membrane Science, 2014, 472, 133-140.                           | 4.1  | 75        |
| 72 | Honeycomb-like porous gel polymer electrolyte membrane for lithium ion batteries with enhanced safety. Scientific Reports, 2014, 4, 6007.                                                                                  | 1.6  | 165       |

| #  | Article                                                                                                                                                        | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Hierarchical NiCo2O4 nanorods as an efficient cathode catalyst for rechargeable non-aqueous Li–O2 batteries. Electrochemistry Communications, 2013, 31, 88-91. | 2.3 | 99        |
| 74 | Conducting polymer-doped polyprrrole as an effective cathode catalyst for Li-O2 batteries. Materials Research Bulletin, 2013, 48, 4979-4983.                   | 2.7 | 25        |