Zhenhua Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2275156/publications.pdf

Version: 2024-02-01

41258 60497 7,208 124 49 81 citations h-index g-index papers 128 128 128 9931 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Hydrophobic Anticancer Drug Delivery by a 980 nm Laserâ€Driven Photothermal Vehicle for Efficient Synergistic Therapy of Cancer Cells In Vivo. Advanced Materials, 2013, 25, 4452-4458.	11.1	298
2	Selfâ€Supply of O ₂ and H ₂ O ₂ by a Nanocatalytic Medicine to Enhance Combined Chemo/Chemodynamic Therapy. Advanced Science, 2019, 6, 1902137.	5.6	257
3	Light Controlled Reversible Inversion of Nanophosphor-Stabilized Pickering Emulsions for Biphasic Enantioselective Biocatalysis. Journal of the American Chemical Society, 2014, 136, 7498-7504.	6.6	240
4	Tumor cell-derived exosomes home to their cells of origin and can be used as Trojan horses to deliver cancer drugs. Theranostics, 2020, 10, 3474-3487.	4.6	226
5	Mesoporous silica-encapsulated gold nanoparticles as artificial enzymes for self-activated cascade catalysis. Biomaterials, 2013, 34, 2600-2610.	5.7	212
6	microRNA-21-5p dysregulation in exosomes derived from heart failure patients impairs regenerative potential. Journal of Clinical Investigation, 2019, 129, 2237-2250.	3.9	197
7	Hybrid Mesoporous Silica-Based Drug Carrier Nanostructures with Improved Degradability by Hydroxyapatite. ACS Nano, 2015, 9, 9614-9625.	7.3	183
8	Long-circulating Er3+-doped Yb2O3 up-conversion nanoparticle as an inÂvivo X-Ray CT imaging contrast agent. Biomaterials, 2012, 33, 6748-6757.	5.7	171
9	Biomimetic O2-Evolving metal-organic framework nanoplatform for highly efficient photodynamic therapy against hypoxic tumor. Biomaterials, 2018, 178, 83-94.	5.7	165
10	Bioresponsive Hyaluronic Acidâ€Capped Mesoporous Silica Nanoparticles for Targeted Drug Delivery. Chemistry - A European Journal, 2013, 19, 1778-1783.	1.7	161
11	Ultrasmall gold nanoparticles in cancer diagnosis and therapy. Theranostics, 2020, 10, 4944-4957.	4.6	160
12	Minimally invasive delivery of therapeutic agents by hydrogel injection into the pericardial cavity for cardiac repair. Nature Communications, 2021, 12, 1412.	5.8	155
13	Luminescent Carbon Dot-Gated Nanovehicles for pH-Triggered Intracellular Controlled Release and Imaging. Langmuir, 2013, 29, 6396-6403.	1.6	153
14	A simple and powerful co-delivery system based on pH-responsive metal-organic frameworks for enhanced cancer immunotherapy. Biomaterials, 2017, 122, 23-33.	5.7	145
15	Needle-Free Injection of Exosomes Derived from Human Dermal Fibroblast Spheroids Ameliorates Skin Photoaging. ACS Nano, 2019, 13, 11273-11282.	7.3	142
16	An off-the-shelf artificial cardiac patch improves cardiac repair after myocardial infarction in rats and pigs. Science Translational Medicine, 2020, 12, .	5.8	131
17	Upconversion nanoprobes for biodetections. Coordination Chemistry Reviews, 2018, 354, 155-168.	9.5	119
18	Biomineralization inspired surface engineering of nanocarriers for pH-responsive, targeted drug delivery. Biomaterials, 2013, 34, 1364-1371.	5.7	117

#	Article	IF	CITATIONS
19	Noninvasive and Reversible Cell Adhesion and Detachment via Single-Wavelength Near-Infrared Laser Mediated Photoisomerization. Journal of the American Chemical Society, 2015, 137, 8199-8205.	6.6	111
20	DNA Nanostructure-Based Universal Microarray Platform for High-Efficiency Multiplex Bioanalysis in Biofluids. ACS Applied Materials & Samp; Interfaces, 2014, 6, 17944-17953.	4.0	110
21	Mesenchymal Stem Cell/Red Blood Cell-Inspired Nanoparticle Therapy in Mice with Carbon Tetrachloride-Induced Acute Liver Failure. ACS Nano, 2018, 12, 6536-6544.	7.3	109
22	Multifunctional upconverting nanoparticles for near-infrared triggered and synergistic antibacterial resistance therapy. Chemical Communications, 2014, 50, 10488-10490.	2.2	106
23	Hyaluronic Acid Hydrogel Integrated with Mesenchymal Stem Cellâ€Secretome to Treat Endometrial Injury in a Rat Model of Asherman's Syndrome. Advanced Healthcare Materials, 2019, 8, e1900411.	3.9	103
24	Cell-mimicking nanodecoys neutralize SARS-CoV-2 and mitigate lung injury in a non-human primate model of COVID-19. Nature Nanotechnology, 2021, 16, 942-951.	15.6	103
25	A Smart Nanoassembly for Multistage Targeted Drug Delivery and Magnetic Resonance Imaging. Advanced Functional Materials, 2014, 24, 3612-3620.	7.8	102
26	Exosomes decorated with a recombinant SARS-CoV-2 receptor-binding domain as an inhalable COVID-19 vaccine. Nature Biomedical Engineering, 2022, 6, 791-805.	11.6	100
27	Engineered CpGâ€Antigen Conjugates Protected Gold Nanoclusters as Smart Selfâ€Vaccines for Enhanced Immune Response and Cell Imaging. Advanced Functional Materials, 2014, 24, 1004-1010.	7.8	99
28	Exosome-eluting stents for vascular healing after ischaemic injury. Nature Biomedical Engineering, 2021, 5, 1174-1188.	11.6	98
29	Near-Infrared Light-Triggered Drug-Delivery Vehicle for Mitochondria-Targeted Chemo-Photothermal Therapy. ACS Applied Materials & Samp; Interfaces, 2014, 6, 4364-4370.	4.0	95
30	Upconversion nanoprobes for efficiently inâvitro imaging reactive oxygen species and inâvivo diagnosing rheumatoid arthritis. Biomaterials, 2015, 39, 15-22.	5 . 7	95
31	Plateletâ€Inspired Nanocells for Targeted Heart Repair After Ischemia/Reperfusion Injury. Advanced Functional Materials, 2019, 29, 1803567.	7.8	92
32	Dermal exosomes containing miR-218-5p promote hair regeneration by regulating \hat{l}^2 -catenin signaling. Science Advances, 2020, 6, eaba1685.	4.7	90
33	A Multiâ€synergistic Platform for Sequential Irradiationâ€Activated Highâ€Performance Apoptotic Cancer Therapy. Advanced Functional Materials, 2014, 24, 522-529.	7.8	85
34	Nucleus-targeted nano delivery system eradicates cancer stem cells by combined thermotherapy and hypoxia-activated chemotherapy. Biomaterials, 2019, 200, 1-14.	5.7	80
35	Aptamer-Capped Multifunctional Mesoporous Strontium Hydroxyapatite Nanovehicle for Cancer-Cell-Responsive Drug Delivery and Imaging. Biomacromolecules, 2012, 13, 4257-4263.	2.6	76
36	Upconverting Nanoparticles with a Mesoporous TiO ₂ Shell for Nearâ€Infraredâ€Triggered Drug Delivery and Synergistic Targeted Cancer Therapy. Chemistry - A European Journal, 2014, 20, 14012-14017.	1.7	76

3

#	Article	IF	CITATIONS
37	Reduced Graphene Oxide Functionalized with a Luminescent Rareâ€Earth Complex for the Tracking and Photothermal Killing of Drugâ€Resistant Bacteria. Chemistry - A European Journal, 2014, 20, 394-398.	1.7	73
38	Platelet membrane and stem cell exosome hybrids enhance cellular uptake and targeting to heart injury. Nano Today, 2021, 39, 101210.	6.2	71
39	Metal–carbenicillin framework-based nanoantibiotics with enhanced penetration and highly efficient inhibition of MRSA. Biomaterials, 2017, 144, 155-165.	5.7	70
40	Platelets and their biomimetics for regenerative medicine and cancer therapies. Journal of Materials Chemistry B, 2018, 6, 7354-7365.	2.9	70
41	Biodegradable, multifunctional DNAzyme nanoflowers for enhanced cancer therapy. NPG Asia Materials, 2017, 9, e365-e365.	3.8	65
42	Polycations-functionalized water-soluble gold nanoclusters: a potential platform for simultaneous enhanced gene delivery and cell imaging. Nanoscale, 2013, 5, 6154.	2.8	60
43	One-step nucleotide-programmed growth of porous upconversion nanoparticles: application to cell labeling and drug delivery. Nanoscale, 2014, 6, 1445-1452.	2.8	60
44	Injection of ROSâ€Responsive Hydrogel Loaded with Basic Fibroblast Growth Factor into the Pericardial Cavity for Heart Repair. Advanced Functional Materials, 2021, 31, 2004377.	7.8	60
45	Photosensitizer-incorporated G-quadruplex DNA-functionalized magnetofluorescent nanoparticles for targeted magnetic resonance/fluorescence multimodal imaging and subsequent photodynamic therapy of cancer. Chemical Communications, 2012, 48, 6556.	2.2	55
46	Bone-Targeted Mesoporous Silica Nanocarrier Anchored by Zoledronate for Cancer Bone Metastasis. Langmuir, 2016, 32, 9237-9244.	1.6	55
47	Targeted anti–IL-1β platelet microparticles for cardiac detoxing and repair. Science Advances, 2020, 6, eaay0589.	4.7	55
48	A novel anticancer theranostic pro-prodrug based on hypoxia and photo sequential control. Chemical Communications, 2016, 52, 9434-9437.	2.2	54
49	Magnetic Self-Assembled Zeolite Clusters for Sensitive Detection and Rapid Removal of Mercury(II). ACS Applied Materials & Detection and Rapid Removal of Mercury(II).	4.0	50
50	Chemical Engineering of Cell Therapy for Heart Diseases. Accounts of Chemical Research, 2019, 52, 1687-1696.	7.6	50
51	Graphene Oxide-Assisted Nucleic Acids Assays Using Conjugated Polyelectrolytes-Based Fluorescent Signal Transduction. Analytical Chemistry, 2015, 87, 3877-3883.	3.2	48
52	Self-Propelled and Near-Infrared-Phototaxic Photosynthetic Bacteria as Photothermal Agents for Hypoxia-Targeted Cancer Therapy. ACS Nano, 2021, 15, 1100-1110.	7.3	48
53	Biocompatible and high-performance amino acids-capped MnWO4 nanocasting as a novel non-lanthanide contrast agent for X-ray computed tomography and T1-weighted magnetic resonance imaging. Nanoscale, 2014, 6, 2211.	2.8	45
54	A Universal and Ultrastable Mineralization Coating Bioinspired from Biofilms. Advanced Functional Materials, 2018, 28, 1802730.	7.8	43

#	Article	IF	CITATIONS
55	Pretargeting and Bioorthogonal Click Chemistry-Mediated Endogenous Stem Cell Homing for Heart Repair. ACS Nano, 2018, 12, 12193-12200.	7.3	42
56	Up-Conversion Y ₂ O ₃ :Yb ³⁺ ,Er ³⁺ Hollow Spherical Drug Carrier with Improved Degradability for Cancer Treatment. ACS Applied Materials & Samp; Interfaces, 2016, 8, 25078-25086.	4.0	39
57	Metal-Based Nanocatalyst for Combined Cancer Therapeutics. Bioconjugate Chemistry, 2020, 31, 1247-1258.	1.8	38
58	One-step DNA-programmed growth of CpG conjugated silver nanoclusters: a potential platform for simultaneous enhanced immune response and cell imaging. Chemical Communications, 2013, 49, 6918.	2.2	37
59	Molecular Threading-Dependent Mass Transport in Paper Origami for Single-Step Electrochemical DNA Sensors. Nano Letters, 2019, 19, 369-374.	4.5	37
60	Facile in situ fabrication of graphene–upconversion hybrid materials with amplified electrogenerated chemiluminescence. Nanoscale, 2012, 4, 400-404.	2.8	35
61	Cyanobacteria-based near-infrared light-excited self-supplying oxygen system for enhanced photodynamic therapy of hypoxic tumors. Nano Research, 2021, 14, 667-673.	5.8	35
62	A CAR T-inspiring platform based on antibody-engineered exosomes from antigen-feeding dendritic cells for precise solid tumor therapy. Biomaterials, 2022, 282, 121424.	5.7	35
63	Nearâ€Infraredâ€Controlled, Targeted Hydrophobic Drugâ€Delivery System for Synergistic Cancer Therapy. Chemistry - A European Journal, 2013, 19, 10388-10394.	1.7	33
64	Engineering a photosynthetic bacteria-incorporated hydrogel for infected wound healing. Acta Biomaterialia, 2022, 140, 302-313.	4.1	32
65	Antibody-Armed Platelets for the Regenerative Targeting of Endogenous Stem Cells. Nano Letters, 2019, 19, 1883-1891.	4.5	31
66	A traceable and bone-targeted nanoassembly based on defect-related luminescent mesoporous silica for enhanced osteogenic differentiation. Journal of Materials Chemistry B, 2017, 5, 1585-1593.	2.9	30
67	Hybridization chain reaction amplification for highly sensitive fluorescence detection of DNA with dextran coated microarrays. Biosensors and Bioelectronics, 2016, 81, 92-96.	5.3	29
68	Prodrug-Based Nanoreactors with Tumor-Specific <i>In Situ</i> Activation for Multisynergistic Cancer Therapy. ACS Applied Materials & Samp; Interfaces, 2020, 12, 34667-34677.	4.0	29
69	Advances in biomaterials and regenerative medicine for primary ovarian insufficiency therapy. Bioactive Materials, 2021, 6, 1957-1972.	8.6	28
70	Lanthanide-based hollow mesoporous nanoparticles: a novel multifunctional platform for simultaneous gene delivery and cell imaging. Chemical Communications, 2013, 49, 7129.	2.2	27
71	Deoxyribozyme-nanosponges for improved photothermal therapy by overcoming thermoresistance. NPG Asia Materials, 2018, 10, 373-384.	3.8	27
72	A multifunctional upconverting nanoparticle incorporated polycationic hydrogel for near-infrared triggered and synergistic treatment of drug-resistant bacteria. Nanotechnology, 2016, 27, 125601.	1.3	26

#	Article	IF	CITATIONS
73	An upconverting nanotheranostic agent activated by hypoxia combined with NIR irradiation for selective hypoxia imaging and tumour therapy. Journal of Materials Chemistry B, 2018, 6, 2747-2757.	2.9	26
74	Cardiac Stromal Cell Patch Integrated with Engineered Microvessels Improves Recovery from Myocardial Infarction in Rats and Pigs. ACS Biomaterials Science and Engineering, 2020, 6, 6309-6320.	2.6	25
75	Photo-responsive hydrogel facilitates nutrition deprivation by an ambidextrous approach for preventing cancer recurrence and metastasis. Biomaterials, 2021, 275, 120992.	5.7	25
76	Easy access to selective binding and recyclable separation of histidine-tagged proteins using Ni2+-decorated superparamagnetic nanoparticles. Nano Research, 2012, 5, 450-459.	5.8	23
77	Aptamerâ€Directed Synthesis of Multifunctional Lanthanideâ€Doped Porous Nanoprobes for Targeted Imaging and Drug Delivery. Small, 2013, 9, 4262-4268.	5.2	23
78	Fluorescent Protein Capped Mesoporous Nanoparticles for Intracellular Drug Delivery and Imaging. Chemistry - A European Journal, 2013, 19, 15378-15383.	1.7	22
79	Combination Delivery of Antigens and CpG by Lanthanidesâ€Based Coreâ€Shell Nanoparticles for Enhanced Immune Response and Dualâ€Mode Imaging. Advanced Healthcare Materials, 2013, 2, 1309-1313.	3.9	22
80	Pathogen-mimicking nanocomplexes: self-stimulating oxidative stress in tumor microenvironment for chemo-immunotherapy. Materials Today, 2017, 20, 346-353.	8.3	22
81	Porous Organic Polymer-Coated Band-Aids for Phototherapy of Bacteria-Induced Wound Infection. ACS Applied Bio Materials, 2019, 2, 613-618.	2.3	21
82	Metal-organic framework-based nanocatalytic medicine for chemodynamic therapy. Science China Materials, 2020, 63, 2429-2434.	3.5	20
83	Nanoparticles functionalized with stem cell secretome and CXCR4-overexpressing endothelial membrane for targeted osteoporosis therapy. Journal of Nanobiotechnology, 2022, 20, 35.	4.2	20
84	Europium-Doped Gd ₂ O ₃ Nanotubes Increase Bone Mineral Density in Vivo and Promote Mineralization in Vitro. ACS Applied Materials & Samp; Interfaces, 2017, 9, 5784-5792.	4.0	19
85	Light-triggered NO-releasing nanoparticles for treating mice with liver fibrosis. Nano Research, 2020, 13, 2197-2202.	5.8	18
86	Expanding Toolbox of Imageable Protein-Gold Hybrid Materials. Chemistry of Materials, 2017, 29, 8440-8448.	3.2	17
87	Recognizing single phospholipid vesicle collisions on carbon fiber nanoelectrode. Science China Chemistry, 2017, 60, 1474-1480.	4.2	17
88	A metal–polyphenolic nanosystem with NIR-II fluorescence-guided combined photothermal therapy and radiotherapy. Chemical Communications, 2021, 57, 11473-11476.	2.2	17
89	Therapeutic exosomal vaccine for enhanced cancer immunotherapy by mediating tumor microenvironment. IScience, 2022, 25, 103639.	1.9	17
90	Bispecific Antibody Inhalation Therapy for Redirecting Stem Cells from the Lungs to Repair Heart Injury. Advanced Science, 2021, 8, 2002127.	5.6	16

#	Article	IF	Citations
91	Intrapericardial hydrogel injection generates high cell retention and augments therapeutic effects of mesenchymal stem cells in myocardial infarction. Chemical Engineering Journal, 2022, 427, 131581.	6.6	15
92	Biomimetic nanoassembly for targeted antigen delivery and enhanced Th1-type immune response. Chemical Communications, 2015, 51, 15975-15978.	2.2	14
93	Synthesis, structures and luminescence properties of 3d–4f heterometallic–organic frameworks (HMOFs) constructed from different copper halide clusters. CrystEngComm, 2016, 18, 4336-4342.	1.3	14
94	Two-photon fluorescent probe for hypoxic cancer stem cells by responding to endogenous nitroreductase. Analytical Methods, 2019, 11, 421-426.	1.3	13
95	Multifunctional Magnetic Nanoplatform Eliminates Cancer Stem Cells via Inhibiting the Secretion of Extracellular Heat Shock Protein 90. Advanced Healthcare Materials, 2019, 8, e1900160.	3.9	13
96	Fluorescent Protein Nanovessels: A New Platform to Generate Bio–Abiotic Hybrid Materials for Bioimaging. Advanced Functional Materials, 2017, 27, 1702051.	7.8	12
97	A NIR-light activated nanoplatform for sensitizing triple negative breast cancer against therapeutic resistance to enhance the treatment effect. Journal of Materials Chemistry B, 2018, 6, 6950-6956.	2.9	12
98	Apoptosis induced by NaYF4:Eu3+ nanoparticles in liver cells via mitochondria damage dependent pathway. Science China Chemistry, 2017, 60, 122-129.	4.2	11
99	Smart calcium peroxide with self-sufficience for biomedicine. Science China Life Sciences, 2020, 63, 152-156.	2.3	11
100	A nano-integrated microfluidic biochip for enzyme-based point-of-care detection of creatinine. Chemical Communications, 2021, 57, 4726-4729.	2.2	11
101	A Carbon-Based Antifouling Nano-Biosensing Interface for Label-Free POCT of HbA1c. Biosensors, 2021, 11, 118.	2.3	11
102	A fluid-powered refillable origami heart pouch for minimally invasive delivery of cell therapies in rats and pigs. Med, 2021, 2, 1253-1268.e4.	2.2	11
103	Multifunctional gold nanoparticle layers for controllable capture and release of proteins. Nanoscale, 2017, 9, 15407-15415.	2.8	10
104	Mesoporous Platinum Nanotherapeutics for Combined Chemo-photothermal Cancer Treatment. ACS Applied Bio Materials, 2019, 2, 3269-3278.	2.3	10
105	A stem cell-derived ovarian regenerative patch restores ovarian function and rescues fertility in rats with primary ovarian insufficiency. Theranostics, 2021, 11 , 8894-8908.	4.6	10
106	Equilibrium sampling informs tissue residue and sediment remediation for pyrethroid insecticides in mariculture: A laboratory demonstration. Science of the Total Environment, 2018, 616-617, 639-646.	3.9	9
107	A Portable Biosensor Based on Au Nanoflower Interface Combined with Electrochemical Immunochromatography for POC Detection of Prostate-Specific Antigen. Biosensors, 2022, 12, 259.	2.3	8
108	Bispecific Antibody Therapy for Effective Cardiac Repair through Redirection of Endogenous Stem Cells. Advanced Therapeutics, 2019, 2, 1900009.	1.6	7

#	Article	IF	CITATIONS
109	pH-Responsive Metal–Organic Framework-Coated Mesoporous Silica Nanoparticles for Immunotherapy. ACS Applied Nano Materials, 2021, 4, 13398-13404.	2.4	7
110	Bioorthogonal chemistry for selective recognition, separation and killing bacteria over mammalian cells. Chemical Communications, 2016, 52, 3482-3485.	2.2	6
111	A biocompatible strategy for the construction of cell patch using upconversion nanoparticles-conjugated mesenchymal stem cells. Materials Letters, 2018, 221, 131-134.	1.3	4
112	Improving the Therapeutic Efficiency of Hypoxic-Activated Prodrugs by Enhancing Hypoxia in Solid Tumors. ACS Biomaterials Science and Engineering, 2022, 8, 1604-1612.	2.6	4
113	DTT–Au NCs Interact with DNA to Form Raspberryâ€Like Particles. Particle and Particle Systems Characterization, 2019, 36, 1800517.	1.2	3
114	A highly selective and sensitive upconversion nanoprobe for monitoring hydroxyl radicals in living cells and the liver. Science China Life Sciences, 2021, 64, 434-442.	2.3	3
115	Microbial hydrogen "manufactory―for enhanced gas therapy and self-activated immunotherapy via reduced immune escape. Journal of Nanobiotechnology, 2022, 20, .	4.2	3
116	Transformable protein–gold hybrid materials serve as supramolecular vehicles for gene delivery. RSC Advances, 2017, 7, 51252-51256.	1.7	2
117	Traceable metallic antigen release for enhanced cancer immunotherapy. Journal of Nanoparticle Research, 2021, 23, 130.	0.8	2
118	Biomimetic Platform Based on Mesoporous Platinum for Multisynergistic Cancer Therapy. ACS Biomaterials Science and Engineering, 2021, 7, 5154-5164.	2.6	2
119	Stable isomeric layered indium coordination polymers for high proton conduction. CrystEngComm, 2022, 24, 294-299.	1.3	2
120	Rational Design of a Near-infrared Fluorescent Material with High Solid-state Efficiency, Aggregation-induced Emission and Live Cell Imaging Property. Chemical Research in Chinese Universities, 2022, 38, 1461-1466.	1.3	2
121	Chemotransformation of bacterial cells without heat-shock. Chemical Research in Chinese Universities, 2017, 33, 160-165.	1.3	1
122	Deflection Laws of Gas Drainage Boreholes in Interbedded Soft and Hard Seams: A Case Study at Xinzheng Coal Mine, China. Advances in Civil Engineering, 2021, 2021, 1-11.	0.4	1
123	Fluorescent protein nanovessels packing DNA into a nucleosome-like gene carrier. New Journal of Chemistry, 2018, 42, 2776-2781.	1.4	0
124	Green Fluorescent Protein Nanovessel Serves as a Nucleolus Targeting Material and Molecule Carrier in Living Cells. Advanced Biology, 2019, 3, e1900047.	3.0	0