MarÃ-a S Aymerich

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2274719/publications.pdf Version: 2024-02-01

ΜΑΡΔΑ S ΔΥΜΕΡΙCΗ

#	Article	IF	CITATIONS
1	Gut microbial dysbiosis after traumatic brain injury modulates the immune response and impairs neurogenesis. Acta Neuropathologica Communications, 2021, 9, 40.	5.2	55
2	Understanding the Potential Role of Sirtuin 2 on Aging: Consequences of SIRT2.3 Overexpression in Senescence. International Journal of Molecular Sciences, 2021, 22, 3107.	4.1	11
3	Expression of Endothelial NOX5 Alters the Integrity of the Blood-Brain Barrier and Causes Loss of Memory in Aging Mice. Antioxidants, 2021, 10, 1311.	5.1	11
4	CB2 Receptors and Neuron–Glia Interactions Modulate Neurotoxicity Generated by MAGL Inhibition. Biomolecules, 2020, 10, 1198.	4.0	9
5	Cannabinoid receptor type 2 as a therapeutic target for Parkinson's disease. , 2020, , 557-573.		2
6	Dopamine Receptor D3 Expression Is Altered in CD4+ T-Cells From Parkinson's Disease Patients and Its Pharmacologic Inhibition Attenuates the Motor Impairment in a Mouse Model. Frontiers in Immunology, 2019, 10, 981.	4.8	36
7	Midbrain microglia mediate a specific immunosuppressive response under inflammatory conditions. Journal of Neuroinflammation, 2019, 16, 233.	7.2	31
8	Impact of Neurodegenerative Diseases on Drug Binding to Brain Tissues: From Animal Models to Human Samples. Neurotherapeutics, 2018, 15, 742-750.	4.4	5
9	The expression of cannabinoid type 1 receptor and 2-arachidonoyl glycerol synthesizing/degrading enzymes is altered in basal ganglia during the active phase of levodopa-induced dyskinesia. Neurobiology of Disease, 2018, 118, 64-75.	4.4	20
10	Stereological Estimates of Glutamatergic, GABAergic, and Cholinergic Neurons in the Pedunculopontine and Laterodorsal Tegmental Nuclei in the Rat. Frontiers in Neuroanatomy, 2018, 12, 34.	1.7	31
11	Cannabinoid pharmacology/therapeutics in chronic degenerative disorders affecting the central nervous system. Biochemical Pharmacology, 2018, 157, 67-84.	4.4	75
12	GPR55: A therapeutic target for Parkinson's disease?. Neuropharmacology, 2017, 125, 319-332.	4.1	67
13	Pharmacologic antagonism of dopamine receptor D3 attenuates neurodegeneration and motor impairment in a mouse model of Parkinson's disease. Neuropharmacology, 2017, 113, 110-123.	4.1	49
14	Seeing through the smoke: Human and animal studies of cannabis use and endocannabinoid signalling in corticolimbic networks. Neuroscience and Biobehavioral Reviews, 2017, 76, 380-395.	6.1	28
15	Fatty acid amide hydrolase inhibition for the symptomatic relief of Parkinson's disease. Brain, Behavior, and Immunity, 2016, 57, 94-105.	4.1	51
16	Neuroprotective Effect of JZL184 in MPP+-Treated SH-SY5Y Cells Through CB2 Receptors. Molecular Neurobiology, 2016, 53, 2312-2319.	4.0	32
17	Structures for G-Protein-Coupled Receptor Tetramers in Complex with G Proteins. Trends in Biochemical Sciences, 2015, 40, 548-551.	7.5	60
18	GPR40 activation leads to CREB and ERK phosphorylation in primary cultures of neurons from the mouse CNS and in human neuroblastoma cells. Hippocampus, 2014, 24, 733-739.	1.9	46

MARÃA S AYMERICH

#	Article	IF	CITATIONS
19	The monoacylglycerol lipase inhibitor JZL184 is neuroprotective and alters glial cell phenotype in the chronic MPTP mouse model. Neurobiology of Aging, 2014, 35, 2603-2616.	3.1	71
20	A simple and efficient method for the production of human glycosylated glial cell line-derived neurotrophic factor using a Semliki Forest virus expression system. International Journal of Pharmaceutics, 2013, 440, 19-26.	5.2	9
21	Loss of Parvalbumin-Positive Neurons From the Globus Pallidus in Animal Models of Parkinson Disease. Journal of Neuropathology and Experimental Neurology, 2012, 71, 973-982.	1.7	16
22	Real-Time C-Protein-Coupled Receptor Imaging to Understand and Quantify Receptor Dynamics. Scientific World Journal, The, 2011, 11, 1995-2010.	2.1	2
23	Longâ€ŧerm neuroprotection and neurorestoration by glial cellâ€derived neurotrophic factor microspheres for the treatment of Parkinson's disease. Movement Disorders, 2011, 26, 1943-1947.	3.9	39
24	Production of highly pure human glycosylated GDNF in a mammalian cell line. International Journal of Pharmaceutics, 2010, 385, 6-11.	5.2	10
25	Cocaine selfâ€administration markedly increases dopamine D ₂ receptor negative cooperativity for dopamine binding: A receptor dimerâ€based analysis. Synapse, 2010, 64, 566-569.	1.2	8
26	Two-color Fluorescence Labeling in Acrolein-fixed Brain Tissue. Journal of Histochemistry and Cytochemistry, 2010, 58, 359-368.	2.5	11
27	Direct involvement of Ïf-1 receptors in the dopamine D ₁ receptor-mediated effects of cocaine. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 18676-18681.	7.1	153
28	Calcium-mediated modulation of the quaternary structure and function of adenosine A2A–dopamine D2 receptor heteromers. Current Opinion in Pharmacology, 2010, 10, 67-72.	3.5	25
29	Interactions between Calmodulin, Adenosine A2A, and Dopamine D2 Receptors. Journal of Biological Chemistry, 2009, 284, 28058-28068.	3.4	65
30	Effective GDNF brain delivery using microspheres—A promising strategy for Parkinson's disease. Journal of Controlled Release, 2009, 135, 119-126.	9.9	131
31	The search for a role of the caudal intralaminar nuclei in the pathophysiology of Parkinson's disease. Brain Research Bulletin, 2009, 78, 55-59.	3.0	24
32	Expression of vesicular glutamate transporters 1 and 2 in the cells of origin of the rat thalamostriatal pathway. Journal of Chemical Neuroanatomy, 2008, 35, 101-107.	2.1	47
33	Sustained release of bioactive glycosylated glial cell-line derived neurotrophic factor from biodegradable polymeric microspheres. European Journal of Pharmaceutics and Biopharmaceutics, 2008, 69, 844-851.	4.3	50
34	Expression of the mRNAs encoding for the vesicular glutamate transporters 1 and 2 in the rat thalamus. Journal of Comparative Neurology, 2007, 501, 703-715.	1.6	106
35	Purification of bioactive glycosylated recombinant glial cell line-derived neurotrophic factor. International Journal of Pharmaceutics, 2007, 344, 9-15.	5.2	21
36	Detection of two different mRNAs in a single section by dual in situ hybridization: A comparison between colorimetric and fluorescent detection. Journal of Neuroscience Methods, 2007, 162, 119-128.	2.5	44

MARÃA S AYMERICH

#	Article	IF	CITATIONS
37	Consequences of unilateral nigrostriatal denervation on the thalamostriatal pathway in rats. European Journal of Neuroscience, 2006, 23, 2099-2108.	2.6	75
38	â€~Functional' neuroanatomical tract tracing: Analysis of changes in gene expression of brain circuits of interest. Brain Research, 2006, 1072, 91-98.	2.2	12
39	Striatal expression of GDNF and differential vulnerability of midbrain dopaminergic cells. European Journal of Neuroscience, 2005, 21, 1815-1827.	2.6	74
40	Thalamic innervation of the direct and indirect basal ganglia pathways in the rat: Ipsi- and contralateral projections. Journal of Comparative Neurology, 2005, 483, 143-153.	1.6	85
41	Two Functional Epitopes of Pigment Epithelial–Derived Factor Block Angiogenesis and Induce Differentiation in Prostate Cancer. Cancer Research, 2005, 65, 5144-5152.	0.9	157
42	Intralaminar Thalamic Nuclei are Main Regulators of Basal Ganglia. , 2005, , 331-339.		2
43	Thalamic innervation of striatal and subthalamic neurons projecting to the rat entopeduncular nucleus. European Journal of Neuroscience, 2004, 19, 1267-1277.	2.6	67
44	ldentification of the Neuroprotective Molecular Region of Pigment Epithelium-Derived Factor and Its Binding Sites on Motor Neurons. Journal of Neuroscience, 2002, 22, 9378-9386.	3.6	102
45	Characterization and Localization of Pigment Epithelium-Derived Factor Binding Sites in the Bovine Retina. , 2001, , 127-133.		0
46	Evidence for pigment epithelium-derived factor receptors in the neural retina. Investigative Ophthalmology and Visual Science, 2001, 42, 3287-93.	3.3	64
47	Rapid Diagnosis of Acute Promyelocytic Leukemia by Analyzing the Immunocytochemical Pattern of the PML Protein With the Monoclonal Antibody PG-M3. American Journal of Clinical Pathology, 2000, 114, 786-792.	0.7	25
48	Binding of Pigment Epithelium-derived Factor (PEDF) to Retinoblastoma Cells and Cerebellar Granule Neurons. Journal of Biological Chemistry, 1999, 274, 31605-31612.	3.4	120
49	Inducible Nitric Oxide Synthase (iNOS) Expression in Human Monocytes Triggered by β-Endorphin through an Increase in cAMP. Biochemical and Biophysical Research Communications, 1998, 245, 717-721.	2.1	18
50	Monocyte Inducible Nitric Oxide Synthase in Multiple Sclerosis: Regulatory Role of Nitric Oxide. Nitric Oxide - Biology and Chemistry, 1997, 1, 95-104.	2.7	38
51	Inducible Nitric Oxide Synthase in Monocytes from Patients with Graves' Disease. Biochemical and Biophysical Research Communications, 1996, 226, 723-729.	2.1	19