List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2273907/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Additive and interfacial control for efficient perovskite light-emitting diodes with reduced trap densities. Journal of Semiconductors, 2022, 43, 050502.	3.7	5
2	The Path to Enlightenment: Progress and Opportunities in High Efficiency Halide Perovskite Light-Emitting Devices. ACS Photonics, 2021, 8, 386-404.	6.6	25
3	Suppressing Efficiency Roll-Off at High Current Densities for Ultra-Bright Green Perovskite Light-Emitting Diodes. ACS Nano, 2020, 14, 6076-6086.	14.6	142
4	Photolithographic Patterning of Perovskite Thin Films for Multicolor Display Applications. Nano Letters, 2020, 20, 3710-3717.	9.1	120
5	Subwavelength optical trapping and transporting using a Bloch mode. Optics Letters, 2020, 45, 1886.	3.3	7
6	Effect of emitter orientation on the outcoupling efficiency of perovskite light-emitting diodes. Optics Letters, 2020, 45, 4786.	3.3	12
7	Towards Perovskite LED Displays. , 2020, , .		0
8	Graphene Quantum Dot Vertical Cavity Surface-Emitting Lasers. ACS Photonics, 2019, 6, 2894-2901.	6.6	8
9	Nonvolatile Rewritable Photomemory Arrays Based on Reversible Phaseâ€Change Perovskite for Optical Information Storage. Advanced Optical Materials, 2019, 7, 1900558.	7.3	51
10	Vacuumâ€Deposited Inorganic Perovskite Memory Arrays with Longâ€Term Ambient Stability. Physica Status Solidi - Rapid Research Letters, 2019, 13, 1900182.	2.4	10
11	Optically Accessible MEMS Resonant Mass Sensor for Biological Applications. Journal of Microelectromechanical Systems, 2019, 28, 494-503.	2.5	6
12	MEMS Resonant Mass Sensor With Integrated Optical Manipulation. IEEE Nanotechnology Magazine, 2018, 17, 714-718.	2.0	4
13	Solution-processed Perovskite Optoelectronics. , 2018, , .		0
14	Ultrathin Flexible Devices Enabled by Solution-Processed Quantum Dots. , 2018, , .		0
15	Optical tweezers system for live stem cell organization at the single-cell level. Biomedical Optics Express, 2018, 9, 771.	2.9	34
16	Targeted Ligand-Exchange Chemistry on Cesium Lead Halide Perovskite Quantum Dots for High-Efficiency Photovoltaics. Journal of the American Chemical Society, 2018, 140, 10504-10513.	13.7	303
17	A Highly Sensitive UV–vis–NIR Allâ€ŀnorganic Perovskite Quantum Dot Phototransistor Based on a Layered Heterojunction. Advanced Optical Materials, 2018, 6, 1800324.	7.3	51
18	Ultrathin (<1 î¼m) Substrate-Free Flexible Photodetector on Quantum Dot-Nanocellulose Paper. Scientific Reports, 2017, 7, 43898.	3.3	12

#	Article	IF	CITATIONS
19	Highâ€Performance Nearâ€IR Photodetector Using Lowâ€Bandgap MA _{0.5} FA _{0.5} Pb _{0.5} Sn _{0.5} I ₃ Perovskite. Advanced Functional Materials, 2017, 27, 1701053.	14.9	103
20	Enhanced mobility CsPbI ₃ quantum dot arrays for record-efficiency, high-voltage photovoltaic cells. Science Advances, 2017, 3, eaao4204.	10.3	801
21	Gene-Edited Human Kidney Organoids Reveal Mechanisms of Disease in Podocyte Development. Stem Cells, 2017, 35, 2366-2378.	3.2	101
22	Highly stable cesium lead iodide perovskite quantum dot light-emitting diodes. Nanotechnology, 2017, 28, 455201.	2.6	39
23	CsPbBr ₃ Perovskite Quantum Dot Vertical Cavity Lasers with Low Threshold and High Stability. ACS Photonics, 2017, 4, 2281-2289.	6.6	243
24	MEMS resonant mass sensor with enabled optical trapping. , 2017, , .		2
25	Silicon Quantum Dot Nanoparticles with Antifouling Coatings for Immunostaining on Live Cancer Cells. ACS Applied Materials & Interfaces, 2016, 8, 13714-13723.	8.0	35
26	Influence of Electrode Interfaces on the Stability of Perovskite Solar Cells: Reduced Degradation Using MoO _{<i>x</i>} /Al for Hole Collection. ACS Energy Letters, 2016, 1, 38-45.	17.4	237
27	Photonic Crystal Optical Tweezers with High Efficiency for Live Biological Samples and Viability Characterization. Scientific Reports, 2016, 6, 19924.	3.3	44
28	Optical modulation and manipulation of neurons and cells with high efficiency through quantum dots and photonic crystals. , 2015, , .		0
29	Detectors: A Flexible Nanocrystal Photovoltaic Ultraviolet Photodetector on a Plant Membrane (Advanced Optical Materials 11/2015). Advanced Optical Materials, 2015, 3, 1480-1480.	7.3	0
30	Progress of MEMS Scanning Micromirrors for Optical Bio-Imaging. Micromachines, 2015, 6, 1675-1689.	2.9	30
31	A Flexible Nanocrystal Photovoltaic Ultraviolet Photodetector on a Plant Membrane. Advanced Optical Materials, 2015, 3, 1530-1536.	7.3	25
32	MEMS scanning micromirror for optical coherence tomography. Biomedical Optics Express, 2015, 6, 211.	2.9	29
33	Diffractive catheter for ultrahigh-resolution spectral-domain volumetric OCT imaging. Optics Letters, 2014, 39, 2016.	3.3	52
34	Fluorescent porous silicon biological probes with high quantum efficiency and stability. Optics Express, 2014, 22, 29996.	3.4	6
35	Non-toxic, colloidal ZnS-AgInS <inf>2</inf> nanoparticles for organic-inorganic hybrid photovoltaics. , 2014, , .		0
36	Patterned Optical Trapping with Two-Dimensional Photonic Crystals. ACS Photonics, 2014, 1, 398-402.	6.6	28

#	Article	IF	CITATIONS
37	Inkjet Printable Flexible Thin-Film NCQD Photodetectors on Unmodified Transparency Films. IEEE Photonics Technology Letters, 2014, 26, 737-740.	2.5	7
38	Red-emitting silicon quantum dot phosphors in warm white LEDs with excellent color rendering. Optics Express, 2014, 22, A276-81.	3.4	4
39	Synthesis and Characterization of Anti-EGFR Fluorescent Nanoparticles for Optical Molecular Imaging. Bioconjugate Chemistry, 2013, 24, 167-175.	3.6	22
40	Dynamic focus-tracking MEMS scanning micromirror with low actuation voltages for endoscopic imaging. Optics Express, 2013, 21, 23934.	3.4	28
41	Surface passivation dependent photoluminescence from silicon quantum dot phosphors. Optics Letters, 2012, 37, 4771.	3.3	13
42	Brightly photoluminescent phosphor materials based on silicon quantum dots with oxide shell passivation. Optics Express, 2012, 20, A69.	3.4	16
43	Exploring spatial resolution in high-sensitivity nanogap quantum dot photodetectors. Optics Letters, 2012, 37, 3144.	3.3	3
44	Solution-processed photodetectors using colloidal germanium nanoparticles. , 2012, , .		0
45	Remote switching of cellular activity and cell signaling using light in conjunction with quantum dots. Biomedical Optics Express, 2012, 3, 447.	2.9	68
46	Flexible thin-film nanocrystal quantum dot photodetectors on unmodified transparency films. , 2012, ,		1
47	Colloidal quantum dot photodetectors enhanced by self-assembled plasmonic nanoparticles. Applied Physics Letters, 2011, 98, 113110.	3.3	26
48	Visible electroluminescence from hybrid colloidal silicon quantum dot-organic light-emitting diodes. Applied Physics Letters, 2011, 98, .	3.3	30
49	Thin film photodiodes fabricated by electrostatic self-assembly of aqueous colloidal quantum dots. Thin Solid Films, 2010, 519, 857-862.	1.8	3
50	Nanostructure-enhanced laser tweezers for efficient trapping and alignment of particles. Optics Express, 2010, 18, 16005.	3.4	21
51	Solution-processed photodetectors from colloidal silicon nano/micro particle composite. Optics Express, 2010, 18, 21622.	3.4	18
52	Nanogap quantum dot photodetectors with high sensitivity and bandwidth. Applied Physics Letters, 2010, 96, .	3.3	29
53	Remote switching of cellular activity using light through quantum dots. , 2010, , .		0
54	Quantum dot photodiodes fabricated by electrostatic layer-by-layer self-assembly. , 2009, , .		0

Quantum dot photodiodes fabricated by electrostatic layer-by-layer self-assembly. , 2009, , . 54

4

#	Article	IF	CITATIONS
55	Trapping and Rotation of Nanowires Assisted by Surface Plasmons. IEEE Journal of Selected Topics in Quantum Electronics, 2009, 15, 1515-1520.	2.9	2
56	Optical manipulation of micron/submicron sized particles and biomolecules through plasmonics. Optics Express, 2008, 16, 13517.	3.4	27
57	Scalable nano-particle assembly by efficient light-induced concentration and fusion. Optics Express, 2008, 16, 17276.	3.4	14
58	Variable Wave Plate via Tunable Form-Birefringent Structures. Journal of Microelectromechanical Systems, 2008, 17, 1039-1046.	2.5	6
59	High efficiency photodetectors fabricated by electrostatic layer-by-layer self-assembly of CdTe quantum dots. Applied Physics Letters, 2008, 93, .	3.3	32
60	Localized surface plasmon assisted microfluidic mixing. Applied Physics Letters, 2008, 92, .	3.3	45
61	Plasmonic tweezers for opto fluidics. , 2008, , .		0
62	Two-dimensional array self-assembled quantum dot sub-diffraction waveguides with low loss and low crosstalk. Nanotechnology, 2008, 19, 295201.	2.6	9
63	Micro-concentrator for vanadium nanorods by efficient light-induced convective flow. , 2008, , .		0
64	Nanocrystal Quantum Dot Waveguides and Photodetectors. , 2007, , .		0
65	Enhanced Optical Trapping through Localized Surface Plasmon Resonance of Au Nanoparticle Array. , 2007, , .		1
66	Nano-scale Nanocrystal Quantum Dot Photodetectors. , 2007, , .		2
67	Enhanced Optical Manipulation through Plasmonics. Conference Proceedings - Lasers and Electro-Optics Society Annual Meeting-LEOS, 2007, , .	0.0	0
68	Comparison of cross-talk effects between colloidal quantum dot and conventional waveguides. Optics Letters, 2007, 32, 235.	3.3	11
69	Large dielectrophoresis force and torque induced by localized surface plasmon resonance of Au nanoparticle array. Optics Letters, 2007, 32, 295.	3.3	24
70	A Nano-scale Nanocrystal Photodetector with High Sensitivity. , 2007, , .		0
71	Trapping and Manipulation of Biological Particles Through a Plasmonic Platform. IEEE Journal of Selected Topics in Quantum Electronics, 2007, 13, 1655-1662.	2.9	37
72	Nanoscale waveguiding methods. Nanoscale Research Letters, 2007, 2, 219-229.	5.7	19

#	Article	IF	CITATIONS
73	Subdiffraction Photon Guidance by Quantum-Dot Cascades. Nano Letters, 2006, 6, 2549-2553.	9.1	46
74	Nanophotonic waveguides by self-assembly of multiple-type quantum dots. , 2006, , .		0
75	New Opto-Plasmonic Tweezers for Manipulation and Rotation of Biological Cells - Design and Fabrication. Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2006, , .	0.5	0