
Timothy E Mcgraw

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2273770/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Endocytic recycling. Nature Reviews Molecular Cell Biology, 2004, 5, 121-132.	16.1	1,657
2	The lung microenvironment: an important regulator of tumour growth and metastasis. Nature Reviews Cancer, 2019, 19, 9-31.	12.8	692
3	Discovery of a Class of Endogenous Mammalian Lipids with Anti-Diabetic and Anti-inflammatory Effects. Cell, 2014, 159, 318-332.	13.5	639
4	Biochemical and cellular properties of insulin receptor signalling. Nature Reviews Molecular Cell Biology, 2018, 19, 31-44.	16.1	486
5	The Akt kinases: Isoform specificity in metabolism and cancer. Cell Cycle, 2009, 8, 2502-2508.	1.3	424
6	Rab10, a Target of the AS160 Rab GAP, Is Required for Insulin-Stimulated Translocation of GLUT4 to the Adipocyte Plasma Membrane. Cell Metabolism, 2007, 5, 293-303.	7.2	304
7	Osteocalcin Signaling in Myofibers Is Necessary and Sufficient for Optimum Adaptation to Exercise. Cell Metabolism, 2016, 23, 1078-1092.	7.2	302
8	Full intracellular retention of GLUT4 requires AS160 Rab GTPase activating protein. Cell Metabolism, 2005, 2, 263-272.	7.2	275
9	An Endocytosed TGN38 Chimeric Protein Is Delivered to the TGN after Trafficking through the Endocytic Recycling Compartment in CHO Cells. Journal of Cell Biology, 1998, 142, 923-936.	2.3	235
10	Thirty sweet years of GLUT4. Journal of Biological Chemistry, 2019, 294, 11369-11381.	1.6	223
11	Insulin Stimulation of GLUT4 Exocytosis, but Not Its Inhibition of Endocytosis, Is Dependent on RabGAP AS160. Molecular Biology of the Cell, 2004, 15, 4406-4415.	0.9	197
12	Insulin-modulated Akt subcellular localization determines Akt isoform-specific signaling. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 7004-7009.	3.3	175
13	Phosphorylation of TXNIP by AKT Mediates Acute Influx of Glucose in Response to Insulin. Cell Reports, 2017, 19, 2005-2013.	2.9	175
14	Insulin Signaling Diverges into Akt-dependent and -independent Signals to Regulate the Recruitment/Docking and the Fusion of GLUT4 Vesicles to the Plasma Membrane. Molecular Biology of the Cell, 2006, 17, 4484-4493.	0.9	174
15	GLUT4 Is Retained by an Intracellular Cycle of Vesicle Formation and Fusion with Endosomes. Molecular Biology of the Cell, 2004, 15, 870-882.	0.9	164
16	GLUT4 Retention in Adipocytes Requires Two Intracellular Insulin-regulated Transport Steps. Molecular Biology of the Cell, 2002, 13, 2421-2435.	0.9	158
17	Distinct Akt phosphorylation states are required for insulin regulated Clut4 and Clut1-mediated glucose uptake. ELife, 2017, 6, .	2.8	121
18	Insulin-regulated Release from the Endosomal Recycling Compartment Is Regulated by Budding of Specialized Vesicles. Molecular Biology of the Cell, 2001, 12, 3489-3501.	0.9	119

TIMOTHY E MCGRAW

#	Article	IF	CITATIONS
19	Absence of Carbohydrate Response Element Binding Protein in Adipocytes Causes Systemic Insulin Resistance and Impairs Glucose Transport. Cell Reports, 2017, 21, 1021-1035.	2.9	103
20	GLUT4 is internalized by a cholesterol-dependent nystatin-sensitive mechanism inhibited by insulin. EMBO Journal, 2006, 25, 5648-5658.	3.5	102
21	The Microenvironment of Lung Cancer and Therapeutic Implications. Advances in Experimental Medicine and Biology, 2016, 890, 75-110.	0.8	96
22	Hyperinsulinemia leads to uncoupled insulin regulation of the GLUT4 glucose transporter and the FoxO1 transcription factor. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 10162-10167.	3.3	86
23	Metabolic Alterations in Lung Cancer–Associated Fibroblasts Correlated with Increased Glycolytic Metabolism of the Tumor. Molecular Cancer Research, 2013, 11, 579-592.	1.5	79
24	GLUT4 Distribution between the Plasma Membrane and the Intracellular Compartments Is Maintained by an Insulin-modulated Bipartite Dynamic Mechanism. Journal of Biological Chemistry, 2006, 281, 484-490.	1.6	74
25	A Naturally Occurring GIP Receptor Variant Undergoes Enhanced Agonist-Induced Desensitization, Which Impairs GIP Control of Adipose Insulin Sensitivity. Molecular and Cellular Biology, 2014, 34, 3618-3629.	1.1	74
26	Characterization of the Insulin-regulated Endocytic Recycling Mechanism in 3T3-L1 Adipocytes Using a Novel Reporter Molecule. Journal of Biological Chemistry, 2000, 275, 4787-4795.	1.6	72
27	Molecular Mechanisms Controlling GLUT4 Intracellular Retention. Molecular Biology of the Cell, 2008, 19, 3477-3487.	0.9	72
28	Specialized sorting of GLUT4 and its recruitment to the cell surface are independently regulated by distinct Rabs. Molecular Biology of the Cell, 2013, 24, 2544-2557.	0.9	65
29	Reciprocal Regulation of Endocytosis and Metabolism. Cold Spring Harbor Perspectives in Biology, 2014, 6, a016964-a016964.	2.3	65
30	GLUT4 Is Sorted to Vesicles Whose Accumulation Beneath and Insertion into the Plasma Membrane Are Differentially Regulated by Insulin and Selectively Affected by Insulin Resistance. Molecular Biology of the Cell, 2010, 21, 1375-1386.	0.9	56
31	Insulin-regulated Aminopeptidase Is a Key Regulator of GLUT4 Trafficking by Controlling the Sorting of GLUT4 from Endosomes to Specialized Insulin-regulated Vesicles. Molecular Biology of the Cell, 2010, 21, 2034-2044.	0.9	56
32	The Carboxyl Terminus of GLUT4 Contains a Serine-Leucine-Leucine Sequence That Functions as a Potent Internalization Motif in Chinese Hamster Ovary Cells. Journal of Biological Chemistry, 1996, 271, 20660-20668.	1.6	53
33	Insulin action in adipocytes, adipose remodeling, and systemic effects. Cell Metabolism, 2021, 33, 748-757.	7.2	51
34	SEC16A is a RAB10 effector required for insulin-stimulated GLUT4 trafficking in adipocytes. Journal of Cell Biology, 2016, 214, 61-76.	2.3	49
35	Identification of an Insulin-responsive, Slow Endocytic Recycling Mechanism in Chinese Hamster Ovary Cells. Journal of Biological Chemistry, 1998, 273, 17968-17977.	1.6	46
36	Disruption of Adipose Rab10-Dependent Insulin Signaling Causes Hepatic Insulin Resistance. Diabetes, 2016, 65, 1577-1589.	0.3	46

TIMOTHY E MCGRAW

#	Article	IF	CITATIONS
37	Gastric Inhibitory Peptide Controls Adipose Insulin Sensitivity via Activation of cAMP-response Element-binding Protein and p110β Isoform of Phosphatidylinositol 3-Kinase. Journal of Biological Chemistry, 2011, 286, 43062-43070.	1.6	44
38	Downregulation of a GPCR by Î ² -Arrestin2-Mediated Switch from an Endosomal to a TGN Recycling Pathway. Cell Reports, 2016, 17, 2966-2978.	2.9	42
39	Methodological Issues in Studying PAHSA Biology: Masking PAHSA Effects. Cell Metabolism, 2018, 28, 543-546.	7.2	40
40	Dendritic cells maintain dermal adipose–derived stromal cells in skin fibrosis. Journal of Clinical Investigation, 2016, 126, 4331-4345.	3.9	38
41	The CB1 Endocannabinoid System Modulates Adipocyte Insulin Sensitivity. Obesity, 2008, 16, 1727-1734.	1.5	35
42	A STIM1-dependent â€~trafficking trap' mechanism regulates Orai1 plasma membrane residence and Ca2+ influx levels. Journal of Cell Science, 2015, 128, 3143-54.	1.2	34
43	Anorexia and Impaired Glucose Metabolism in Mice With Hypothalamic Ablation of Glut4 Neurons. Diabetes, 2015, 64, 405-417.	0.3	28
44	Development of a new model system to dissect isoform specific Akt signalling in adipocytes. Biochemical Journal, 2015, 468, 425-434.	1.7	27
45	Insulin-promoted mobilization of GLUT4 from a perinuclear storage site requires RAB10. Molecular Biology of the Cell, 2021, 32, 57-73.	0.9	21
46	SNAP23 regulates BAX-dependent adipocyte programmed cell death independently of canonical macroautophagy. Journal of Clinical Investigation, 2018, 128, 3941-3956.	3.9	20
47	Altered Plasma Profile of Antioxidant Proteins as an Early Correlate of Pancreatic Î ² Cell Dysfunction. Journal of Biological Chemistry, 2016, 291, 9648-9656.	1.6	16
48	Expression of the mono-ADP-ribosyltransferase ART1 by tumor cells mediates immune resistance in non–small cell lung cancer. Science Translational Medicine, 2022, 14, eabe8195.	5.8	16
49	Global evolution of the tumor microenvironment associated with progression from preinvasive invasive human lung adenocarcinoma. Cell Reports, 2022, 39, 110639.	2.9	15
50	Adenovirus Protein E4-ORF1 Activation of PI3 Kinase Reveals Differential Regulation of Downstream Effector Pathways in Adipocytes. Cell Reports, 2016, 17, 3305-3318.	2.9	13
51	Defective insulin-stimulated GLUT4 translocation in brown adipocytes induces systemic glucose homeostasis dysregulation independent of thermogenesis in female mice. Molecular Metabolism, 2021, 53, 101305.	3.0	11
52	Characterization of Endocytic Pathways by Quantitative Fluorescence Microscopy. Microscopy and Microanalysis, 1998, 4, 1024-1025.	0.2	0
53	Secretion of Adipsin as an Assay to Measure Flux from the Endoplasmic Reticulum (ER). Bio-protocol, 2017, 7, .	0.2	0