
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2273622/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Gene–gene interaction of AhRwith and within the Wntcascade affects susceptibility to lung cancer. European Journal of Medical Research, 2022, 27, 14.	0.9	1
2	Multiwalled Carbon Nanotubes Induce Fibrosis and Telomere Length Alterations. International Journal of Molecular Sciences, 2022, 23, 6005.	1.8	6
3	Causal relationships between body mass index, smoking and lung cancer: Univariable and multivariable Mendelian randomization. International Journal of Cancer, 2021, 148, 1077-1086.	2.3	73
4	A human relevant mixture of persistent organic pollutants (POPs) and perfluorooctane sulfonic acid (PFOS) enhance nerve growth factor (NGF)-induced neurite outgrowth in PC12 cells. Toxicology Letters, 2021, 338, 85-96.	0.4	7
5	Genome-wide association meta-analysis identifies pleiotropic risk loci for aerodigestive squamous cell cancers. PLoS Genetics, 2021, 17, e1009254.	1.5	19
6	Long-Term Exposure to Nanosized TiO2 Triggers Stress Responses and Cell Death Pathways in Pulmonary Epithelial Cells. International Journal of Molecular Sciences, 2021, 22, 5349.	1.8	5
7	Characterization and toxicity evaluation of air-borne particles released by grinding from two dental resin composites in vitro. Dental Materials, 2021, 37, 1121-1133.	1.6	5
8	The leukocyte telomere length, single nucleotide polymorphisms near <i>TERC</i> gene and risk of COPD. PeerJ, 2021, 9, e12190.	0.9	3
9	Transcriptomeâ€wide association study reveals candidate causal genes for lung cancer. International Journal of Cancer, 2020, 146, 1862-1878.	2.3	33
10	Genomeâ€wide association study of INDELs identified four novel susceptibility loci associated with lung cancer risk. International Journal of Cancer, 2020, 146, 2855-2864.	2.3	7
11	Effects of mild steel welding fume particles on pulmonary epithelial inflammation and endothelial activation. Toxicology and Industrial Health, 2020, 36, 995-1001.	0.6	8
12	Association Analysis of Driver Gene–Related Genetic Variants Identified Novel Lung Cancer Susceptibility Loci with 20,871 Lung Cancer Cases and 15,971 Controls. Cancer Epidemiology Biomarkers and Prevention, 2020, 29, 1423-1429.	1.1	6
13	Lung Cancer Risk in Never-Smokers of European Descent is Associated With Genetic Variation in the 5p15.33 TERT-CLPTM1Ll Region. Journal of Thoracic Oncology, 2019, 14, 1360-1369.	0.5	27
14	Carcinogenicity of night shift work. Lancet Oncology, The, 2019, 20, 1058-1059.	5.1	219
15	Cellular Responses of Industrially Relevant Silica Dust on Human Glial Cells In Vitro. International Journal of Molecular Sciences, 2019, 20, 358.	1.8	6
16	Elevated Platelet Count Appears to Be Causally Associated with Increased Risk of Lung Cancer: A Mendelian Randomization Analysis. Cancer Epidemiology Biomarkers and Prevention, 2019, 28, 935-942.	1.1	21
17	Genetic interaction analysis among oncogenesis-related genes revealed novel genes and networks in lung cancer development. Oncotarget, 2019, 10, 1760-1774.	0.8	25
18	Cellulose nanocrystals modulate alveolar macrophage phenotype and phagocytic function. Biomaterials, 2019, 203, 31-42.	5.7	29

#	Article	IF	CITATIONS
19	Mechanisms of Toxicity of Industrially Relevant Silicomanganese Dust on Human 1321N1 Astrocytoma Cells: An In Vitro Study. International Journal of Molecular Sciences, 2019, 20, 740.	1.8	4
20	Systematic analyses of regulatory variants in DNase I hypersensitive sites identified two novel lung cancer susceptibility loci. Carcinogenesis, 2019, 40, 432-440.	1.3	5
21	Mendelian Randomization and mediation analysis of leukocyte telomere length and risk of lung and head and neck cancers. International Journal of Epidemiology, 2019, 48, 751-766.	0.9	32
22	Criteria for grouping of manufactured nanomaterials to facilitate hazard and risk assessment, a systematic review of expert opinions. Regulatory Toxicology and Pharmacology, 2018, 95, 270-279.	1.3	30
23	Genome-wide interaction study of smoking behavior and non-small cell lung cancer risk in Caucasian population. Carcinogenesis, 2018, 39, 336-346.	1.3	29
24	Characterization of the proteome and lipidome profiles of human lung cells after low dose and chronic exposure to multiwalled carbon nanotubes. Nanotoxicology, 2018, 12, 138-152.	1.6	20
25	Decreased macrophage phagocytic function due to xenobiotic exposures in vitro, difference in sensitivity between various macrophage models. Food and Chemical Toxicology, 2018, 112, 86-96.	1.8	14
26	Sleep quality and methylation status of selected tumor suppressor genes among nurses and midwives. Chronobiology International, 2018, 35, 122-131.	0.9	6
27	Circadian gene methylation in rotating-shift nurses: a cross-sectional study. Chronobiology International, 2018, 35, 111-121.	0.9	21
28	Cellular responses of human astrocytoma cells to dust from the Acheson process: An in vitro study. NeuroToxicology, 2018, 65, 241-247.	1.4	4
29	Inflammation in the pleural cavity following injection of multi-walled carbon nanotubes is dependent on their characteristics and the presence of IL-1 genes. Nanotoxicology, 2018, 12, 522-538.	1.6	12
30	Genetic modifiers of radon-induced lung cancer risk: a genome-wide interaction study in former uranium miners. International Archives of Occupational and Environmental Health, 2018, 91, 937-950.	1.1	27
31	Identification of susceptibility pathways for the role of chromosome 15q25.1 in modifying lung cancer risk. Nature Communications, 2018, 9, 3221.	5.8	60
32	Copy number variation, increased gene expression, and molecular mechanisms of neurofascin in lung cancer. Molecular Carcinogenesis, 2017, 56, 2076-2085.	1.3	20
33	Large-scale association analysis identifies new lung cancer susceptibility loci and heterogeneity in genetic susceptibility across histological subtypes. Nature Genetics, 2017, 49, 1126-1132.	9.4	472
34	Effects on human bronchial epithelial cells following low-dose chronic exposure to nanomaterials: A 6-month transformation study. Toxicology in Vitro, 2017, 44, 230-240.	1.1	22
35	Mechanisms of breast cancer risk in shift workers: association of telomere shortening with the duration and intensity of night work. Cancer Medicine, 2017, 6, 1988-1997.	1.3	39
36	Sleep quality and methylation status of core circadian rhythm genes among nurses and midwives. Chronobiology International, 2017, 34, 1211-1223.	0.9	14

#	Article	IF	CITATIONS
37	<i>In vitro</i> genotoxicity testing of four reference metal nanomaterials, titanium dioxide, zinc oxide, cerium oxide and silver: towards reliable hazard assessment. Mutagenesis, 2017, 32, 117-126.	1.0	93
38	Toxicoproteomic effects of carbon nanotubes on chronically exposed human lung cells. Toxicology Letters, 2017, 280, S141.	0.4	0
39	Rotating night work, lifestyle factors, obesity and promoter methylation in BRCA1 and BRCA2 genes among nurses and midwives. PLoS ONE, 2017, 12, e0178792.	1.1	15
40	Mechanisms of Breast Cancer in Shift Workers: DNA Methylation in Five Core Circadian Genes in Nurses Working Night Shifts. Journal of Cancer, 2017, 8, 2876-2884.	1.2	25
41	Loss of <i>MKK3</i> and <i>MK2 </i> Copy Numbers in Non-Small Cell Lung Cancer. Journal of Cancer, 2016, 7, 512-515.	1.2	11
42	Effects of carbon nanotubes on intercellular communication and involvement of IL-1 genes. Journal of Cell Communication and Signaling, 2016, 10, 153-162.	1.8	9
43	Genetic Risk Can Be Decreased: Quitting Smoking Decreases and Delays Lung Cancer for Smokers With High and Low CHRNA5 Risk Genotypes — A Meta-Analysis. EBioMedicine, 2016, 11, 219-226.	2.7	40
44	Mutations in TP53 increase the risk of SOX2 copy number alterations and silencing of TP53 reduces SOX2 expression in non-small cell lung cancer. BMC Cancer, 2016, 16, 28.	1.1	14
45	Night shift work and other determinants of estradiol, testosterone, and dehydroepiandrosterone sulfate among middle-aged nurses and midwives. Scandinavian Journal of Work, Environment and Health, 2016, 42, 435-446.	1.7	20
46	Association of the FAM46A Gene VNTRs and BAG6 rs3117582 SNP with Non Small Cell Lung Cancer (NSCLC) in Croatian and Norwegian Populations. PLoS ONE, 2015, 10, e0122651.	1.1	28
47	CHRNA5 Risk Variant Predicts Delayed Smoking Cessation and Earlier Lung Cancer Diagnosis—A Meta-Analysis. Journal of the National Cancer Institute, 2015, 107, .	3.0	72
48	Involvement of IL-1 genes in the cellular responses to carbon nanotube exposure. Cytokine, 2015, 73, 128-137.	1.4	18
49	CTCF mediates the <i>TERT</i> enhancer-promoter interactions in lung cancer cells: Identification of a novel enhancer region involved in the regulation of <i>TERT</i> gene. International Journal of Cancer, 2014, 134, 2305-2313.	2.3	43
50	Analysis of polymorphisms in the circadian-related genes and breast cancer risk in Norwegian nurses working night shifts. Breast Cancer Research, 2013, 15, R53.	2.2	76
51	DNA methylation at promoter regions of interleukin 1B, interleukin 6, and interleukin 8 in non-small cell lung cancer. Cancer Immunology, Immunotherapy, 2013, 62, 337-345.	2.0	75
52	Functional effect of polymorphisms in 15q25 locus on CHRNA5 mRNA, bulky DNA adducts and <i>TP53</i> mutations. International Journal of Cancer, 2013, 132, 1811-1820.	2.3	12
53	Breast Cancer Among Nurses: Is the Intensity of Night Work Related to Hormone Receptor Status?. American Journal of Epidemiology, 2013, 178, 110-117.	1.6	24
54	Informed Conditioning on Clinical Covariates Increases Power in Case-Control Association Studies. PLoS Genetics, 2012, 8, e1003032.	1.5	78

#	Article	IF	CITATIONS
55	Functional analysis of a lung cancer risk haplotype in the IL1B gene regulatory region. Journal of Human Genetics, 2012, 57, 747-752.	1.1	10
56	DNA methylation of the CYP1A1 enhancer is associated with smokingâ€induced genetic alterations in human lung. International Journal of Cancer, 2012, 131, 1509-1516.	2.3	57
57	Night Work and Breast Cancer Risk Among Norwegian Nurses: Assessment by Different Exposure Metrics. American Journal of Epidemiology, 2011, 173, 1272-1279.	1.6	148
58	A combination of functional polymorphisms in the CASP8, MMP1, IL10 and SEPS1 genes affects risk of non-small cell lung cancer. Lung Cancer, 2011, 71, 123-129.	0.9	60
59	Single nucleotide polymorphisms as susceptibility, prognostic, and therapeutic markers of nonsmall cell lung cancer. Lung Cancer: Targets and Therapy, 2011, 3, 1.	1.3	20
60	Night work and breast cancer risk among Norwegian nurses. Occupational and Environmental Medicine, 2011, 68, A17-A17.	1.3	0
61	Cigarette smoking increases copy number alterations in nonsmall-cell lung cancer. Proceedings of the United States of America, 2011, 108, 16345-16350.	3.3	61
62	Impact on Disease Development, Genomic Location and Biological Function of Copy Number Alterations in Non-Small Cell Lung Cancer. PLoS ONE, 2011, 6, e22961.	1.1	16
63	Gene variants and lung cancer risk. BMC Proceedings, 2010, 4, .	1.8	1
64	Replication of Lung Cancer Susceptibility Loci at Chromosomes 15q25, 5p15, and 6p21: A Pooled Analysis From the International Lung Cancer Consortium. Journal of the National Cancer Institute, 2010, 102, 959-971.	3.0	174
65	International Lung Cancer Consortium: Coordinated association study of 10 potential lung cancer susceptibility variants. Carcinogenesis, 2010, 31, 625-633.	1.3	56
66	Functional characterization of polymorphisms in the human TFPI gene. Biochemical and Biophysical Research Communications, 2010, 397, 106-111.	1.0	19
67	The TERT-CLPTM1L lung cancer susceptibility variant associates with higher DNA adduct formation in the lung. Carcinogenesis, 2009, 30, 1368-1371.	1.3	95
68	Genome-Wide Analysis of Survival in Early-Stage Non–Small-Cell Lung Cancer. Journal of Clinical Oncology, 2009, 27, 2660-2667.	0.8	110
69	A specific interleukin-1B haplotype correlates with high levels of IL1B mRNA in the lung and increased risk of non-small cell lung cancer. Carcinogenesis, 2009, 30, 1186-1192.	1.3	81
70	Allele-specific induction of IL1B â^31 T/C promoter polymorphism by lung carcinogens. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2008, 656, 14-18.	0.9	17
71	A comprehensive analysis of phase I and phase II metabolism gene polymorphisms and risk of non-small cell lung cancer in smokers. Carcinogenesis, 2008, 29, 1164-1169.	1.3	123
72	International Lung Cancer Consortium: Pooled Analysis of Sequence Variants in DNA Repair and Cell Cycle Pathways. Cancer Epidemiology Biomarkers and Prevention, 2008, 17, 3081-3089.	1.1	93

#	Article	IF	CITATIONS
73	Frequency of TP53 Mutations in Relation to Arg72Pro Genotypes in Non–Small Cell Lung Cancer. Cancer Epidemiology Biomarkers and Prevention, 2007, 16, 2077-2081.	1.1	21
74	Differential binding of proteins to the IL1B â^'31 T/C polymorphism in lung epithelial cells. Cytokine, 2007, 38, 43-48.	1.4	59
75	Polymorphisms of dopamine receptor/transporter genes and risk of non-small cell lung cancer. Lung Cancer, 2007, 56, 17-23.	0.9	37
76	Polymorphisms of DNA repair genes and risk of non-small cell lung cancer. Carcinogenesis, 2006, 27, 560-567.	1.3	365
77	Msh2 deficiency increases susceptibility to benzo[a]pyrene-induced lymphomagenesis. International Journal of Cancer, 2006, 118, 2899-2902.	2.3	11
78	Association of a functional polymorphism in the promoter of theMDM2 gene with risk of nonsmall cell lung cancer. International Journal of Cancer, 2006, 119, 718-721.	2.3	143
79	Interleukin 1 receptor antagonist gene polymorphism and risk of lung cancer: A possible interaction with polymorphisms in the interleukin 1 beta gene. Lung Cancer, 2005, 50, 285-290.	0.9	65
80	Genomic instability in oral squamous cell carcinoma: relationship to betel-quid chewing. Oral Oncology, 2004, 40, 298-303.	0.8	17
81	Polymorphisms of the interleukin-1 ? gene are associated with increased risk of non-small cell lung cancer. International Journal of Cancer, 2004, 109, 353-356.	2.3	130
82	Association of a common polymorphism in the cyclooxygenase 2 gene with risk of non-small cell lung cancer. Carcinogenesis, 2003, 25, 229-235.	1.3	184
83	A catalogue of polymorphisms related to xenobiotic metabolism and cancer susceptibility. Pharmacogenetics and Genomics, 2002, 12, 459-463.	5.7	24
84	Induction of microsatellite mutations by oxidative agents in human lung cancer cell lines. Carcinogenesis, 2000, 21, 1521-1526.	1.3	46
85	Induction of microsatellite mutations by oxidative agents in human lung cancer cell lines. Carcinogenesis, 2000, 21, 1521-1526.	1.3	53