List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/227314/publications.pdf Version: 2024-02-01

		70961	98622
112	5,133	41	67
papers	citations	h-index	g-index
112	112	112	4260
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Removal of Pb(II), Cu(II), and Cd(II) from aqueous solutions by biochar derived from KMnO4 treated hickory wood. Bioresource Technology, 2015, 197, 356-362.	4.8	436
2	Aerobic denitrification: A review of important advances of the last 30 years. Biotechnology and Bioprocess Engineering, 2015, 20, 643-651.	1.4	361
3	Simultaneous nitrification, denitrification and phosphorus removal in an aerobic granular sequencing batch reactor with mixed carbon sources: reactor performance, extracellular polymeric substances and microbial successions. Chemical Engineering Journal, 2018, 331, 841-849.	6.6	242
4	Simultaneous nitrification, denitrification and phosphorus removal in an aerobic granular sludge sequencing batch reactor with high dissolved oxygen: Effects of carbon to nitrogen ratios. Science of the Total Environment, 2018, 642, 1145-1152.	3.9	140
5	Novel pectin based composite hydrogel derived from grapefruit peel for enhanced Cu(II) removal. Journal of Hazardous Materials, 2020, 384, 121445.	6.5	137
6	Microbial population dynamics during sludge granulation in an A/O/A sequencing batch reactor. Bioresource Technology, 2016, 214, 1-8.	4.8	123
7	Multicavity triethylenetetramine-chitosan/alginate composite beads for enhanced Cr(VI) removal. Journal of Cleaner Production, 2019, 231, 733-745.	4.6	120
8	Enhanced simultaneous nitrification, denitrification and phosphorus removal through mixed carbon source by aerobic granular sludge. Journal of Hazardous Materials, 2020, 382, 121043.	6.5	113
9	Functionalization of 4-aminothiophenol and 3-aminopropyltriethoxysilane with graphene oxide for potential dye and copper removal. Journal of Hazardous Materials, 2016, 310, 179-187.	6.5	106
10	Enhanced nitrogen removal in an aerobic granular sequencing batch reactor performing simultaneous nitrification, endogenous denitrification and phosphorus removal with low superficial gas velocity. Chemical Engineering Journal, 2017, 326, 1223-1231.	6.6	105
11	Hydrodynamic shear force shaped the microbial community and function in the aerobic granular sequencing batch reactors for low carbon to nitrogen (C/N) municipal wastewater treatment. Bioresource Technology, 2019, 271, 48-58.	4.8	97
12	A facile synthesis of core-shell/bead-like poly (vinyl alcohol)/alginate@PAM with good adsorption capacity, high adaptability and stability towards Cu(â…;) removal. Chemical Engineering Journal, 2018, 351, 462-472.	6.6	94
13	Natural sunlight induced rapid formation of water-born algal-bacterial granules in an aerobic bacterial granular photo-sequencing batch reactor. Journal of Hazardous Materials, 2018, 359, 222-230.	6.5	94
14	Efficient heavy metal removal from water by alginate-based porous nanocomposite hydrogels: The enhanced removal mechanism and influencing factor insight. Journal of Hazardous Materials, 2021, 418, 126358.	6.5	93
15	Hybrid functionalized chitosan-Al2O3@SiO2 composite for enhanced Cr(VI) adsorption. Chemosphere, 2018, 203, 188-198.	4.2	84
16	Microbial community in a hydrogenotrophic denitrification reactor based on pyrosequencing. Applied Microbiology and Biotechnology, 2015, 99, 10829-10837.	1.7	83
17	Elevated salinity deteriorated enhanced biological phosphorus removal in an aerobic granular sludge sequencing batch reactor performing simultaneous nitrification, denitrification and phosphorus removal. Journal of Hazardous Materials, 2020, 390, 121782.	6.5	81
18	Performance and microbial communities in a combined bioelectrochemical and sulfur autotrophic denitrification system at low temperature. Chemosphere, 2018, 193, 337-342.	4.2	80

#	Article	IF	CITATIONS
19	Simultaneous nitrification, denitrification and phosphorus removal in aerobic granular sequencing batch reactors with high aeration intensity: Impact of aeration time. Bioresource Technology, 2018, 263, 214-222.	4.8	76
20	A high-throughput sequencing study of bacterial communities in an autohydrogenotrophic denitrifying bio-ceramsite reactor. Process Biochemistry, 2015, 50, 1904-1910.	1.8	65
21	A comprehensive comparison between non-bulking and bulking aerobic granular sludge in microbial communities. Bioresource Technology, 2019, 294, 122151.	4.8	65
22	Novel talc encapsulated lanthanum alginate hydrogel for efficient phosphate adsorption and fixation. Chemosphere, 2020, 256, 127124.	4.2	65
23	A pilot-scale study on the treatment of landfill leachate by a composite biological system under low dissolved oxygen conditions: Performance and microbial community. Bioresource Technology, 2020, 296, 122344.	4.8	64
24	Highly efficient removal of Cr(VI) and Cu(II) by biochar derived from Artemisia argyi stem. Environmental Science and Pollution Research, 2019, 26, 13221-13234.	2.7	61
25	Effects of phenol on extracellular polymeric substances and microbial communities from aerobic granular sludge treating low strength and salinity wastewater. Science of the Total Environment, 2021, 752, 141785.	3.9	61
26	Adaptation to salinity: Response of biogas production and microbial communities in anaerobic digestion of kitchen waste to salinity stress. Journal of Bioscience and Bioengineering, 2020, 130, 173-178.	1.1	60
27	Response and recovery of aerobic granular sludge to pH shock for simultaneous removal of aniline and nitrogen. Chemosphere, 2019, 221, 366-374.	4.2	58
28	Removal performance and microbial communities in a sequencing batch reactor treating hypersaline phenol-laden wastewater. Bioresource Technology, 2016, 218, 146-152.	4.8	57
29	Sorption of lead ions onto oxidized bagasse-biochar mitigates Pb-induced oxidative stress on hydroponically grown chicory: Experimental observations and mechanisms. Chemosphere, 2018, 208, 887-898.	4.2	56
30	Robustness of an aerobic granular sludge sequencing batch reactor for low strength and salinity wastewater treatment at ambient to winter temperatures. Journal of Hazardous Materials, 2020, 384, 121454.	6.5	56
31	Unraveling characteristics of simultaneous nitrification, denitrification and phosphorus removal (SNDPR) in an aerobic granular sequencing batch reactor. Bioresource Technology, 2016, 220, 651-655.	4.8	51
32	Autotrophic denitrification by nitrate-dependent Fe(II) oxidation in a continuous up-flow biofilter. Bioprocess and Biosystems Engineering, 2016, 39, 277-284.	1.7	51
33	Insight into the impact of ZnO nanoparticles on aerobic granular sludge under shock loading. Chemosphere, 2017, 173, 411-416.	4.2	51
34	Tolerance of an aerobic denitrifier (Pseudomonas stutzeri) to high O2 concentrations. Biotechnology Letters, 2014, 36, 719-722.	1.1	49
35	Performance and microbial population dynamics during stable operation and reactivation after extended idle conditions in an aerobic granular sequencing batch reactor. Bioresource Technology, 2017, 238, 116-121.	4.8	48
36	Direct interspecies electron transfer stimulated by granular activated carbon enhances anaerobic methanation efficiency from typical kitchen waste lipid-rapeseed oil. Science of the Total Environment, 2020, 704, 135282.	3.9	48

#	Article	IF	CITATIONS
37	Highly selective and sustainable clean-up of phosphate from aqueous phase by eco-friendly lanthanum cross-linked polyvinyl alcohol/alginate/palygorskite composite hydrogel beads. Journal of Cleaner Production, 2021, 298, 126878.	4.6	48
38	Comparison of performance and microbial communities in a bioelectrochemical system for simultaneous denitrification and chromium removal: Effects of pH. Process Biochemistry, 2018, 73, 154-161.	1.8	46
39	Microbial community and metabolism activity in a bioelectrochemical denitrification system under long-term presence of p-nitrophenol. Bioresource Technology, 2016, 218, 189-195.	4.8	44
40	Microbial community and function evaluation in the start-up period of bioaugmented SBR fed with aniline wastewater. Bioresource Technology, 2021, 319, 124148.	4.8	44
41	Characteristics of phenol degradation in saline conditions of a halophilic strain JS3 isolated from industrial activated sludge. Marine Pollution Bulletin, 2015, 99, 230-234.	2.3	43
42	Investigation of rapid granulation in SBRs treating aniline-rich wastewater with different aniline loading rates. Science of the Total Environment, 2019, 646, 841-849.	3.9	42
43	Simultaneous removal of aniline, nitrogen and phosphorus in aniline-containing wastewater treatment by using sequencing batch reactor. Bioresource Technology, 2016, 207, 422-429.	4.8	41
44	Interaction and removal of oxytetracycline with aerobic granular sludge. Bioresource Technology, 2021, 320, 124358.	4.8	41
45	Chronic responses of aerobic granules to zinc oxide nanoparticles in a sequencing batch reactor performing simultaneous nitrification, denitrification and phosphorus removal. Bioresource Technology, 2017, 238, 95-101.	4.8	40
46	Phenol degradation by halophilic fungal isolate JS4 and evaluation of its tolerance of heavy metals. Applied Microbiology and Biotechnology, 2016, 100, 1883-1890.	1.7	39
47	Biodegradation of phenol by entrapped cell of Debaryomyces sp. with nano-Fe3O4 under hypersaline conditions. International Biodeterioration and Biodegradation, 2017, 123, 37-45.	1.9	38
48	Aerobic denitrification by Pseudomonas stutzeri C3 incapable of heterotrophic nitrification. Bioprocess and Biosystems Engineering, 2015, 38, 407-409.	1.7	36
49	Nitrate removal from groundwater by hydrogen-fed autotrophic denitrification in a bio-ceramsite reactor. Water Science and Technology, 2014, 69, 2417-2422.	1.2	35
50	Nitrate and COD removal in an upflow biofilter under an aerobic atmosphere. Bioresource Technology, 2014, 158, 156-160.	4.8	34
51	Nitrate removal in a combined bioelectrochemical and sulfur autotrophic denitrification system under high nitrate concentration: effects of pH. Bioprocess and Biosystems Engineering, 2018, 41, 449-455.	1.7	34
52	Toxic effects of vanadium (V) on a combined autotrophic denitrification system using sulfur and hydrogen as electron donors. Bioresource Technology, 2018, 264, 319-326.	4.8	34
53	Effects of current intensities on the performances and microbial communities in a combined bio-electrochemical and sulfur autotrophic denitrification (CBSAD) system. Science of the Total Environment, 2019, 694, 133775.	3.9	34
54	Studies of malachite green adsorption on covalently functionalized Fe3O4@SiO2–graphene oxides core–shell magnetic microspheres. Journal of Sol-Gel Science and Technology, 2017, 82, 424-431.	1.1	33

#	Article	IF	CITATIONS
55	Scavenging effect of oxidized biochar against the phytotoxicity of lead ions on hydroponically grown chicory: An anatomical and ultrastructural investigation. Ecotoxicology and Environmental Safety, 2019, 170, 363-374.	2.9	33
56	A novel magnetic biochar from sewage sludge: synthesis and its application for the removal of malachite green from wastewater. Water Science and Technology, 2016, 74, 1971-1979.	1.2	31
57	Photo-reduction of Ag nanoparticles by using cellulose-based micelles as soft templates: Catalytic and antimicrobial activities. Carbohydrate Polymers, 2019, 213, 419-427.	5.1	30
58	Bacterial communities in a novel three-dimensional bioelectrochemical denitrification system: the effects of pH. Applied Microbiology and Biotechnology, 2016, 100, 6805-6813.	1.7	29
59	Research on the aerobic granular sludge under alkalinity in sequencing batch reactors: Removal efficiency, metagenomic and key microbes. Bioresource Technology, 2020, 296, 122280.	4.8	29
60	Rapid formation and pollutant removal ability of aerobic granules in a sequencing batch airlift reactor at low temperature. Environmental Technology (United Kingdom), 2016, 37, 3078-3085.	1.2	28
61	Insights into the simultaneous nitrification, denitrification and phosphorus removal process for in situ sludge reduction and potential phosphorus recovery. Science of the Total Environment, 2021, 801, 149569.	3.9	28
62	Culture of denitrifying phosphorus removal granules with different influent wastewater. Desalination and Water Treatment, 2016, 57, 17247-17254.	1.0	27
63	Response of a three dimensional bioelectrochemical denitrification system to the long-term presence of graphene oxide. Bioresource Technology, 2016, 214, 24-29.	4.8	27
64	Cr(<scp>vi</scp>) removal by combined redox reactions and adsorption using pectin-stabilized nanoscale zero-valent iron for simulated chromium contaminated water. RSC Advances, 2015, 5, 65068-65073.	1.7	26
65	Elucidation of microbial characterization of aerobic granules in a sequencing batch reactor performing simultaneous nitrification, denitrification and phosphorus removal at varying carbon to phosphorus ratios. Bioresource Technology, 2017, 241, 127-133.	4.8	24
66	Response of aerobic sludge to AHL-mediated QS: Granulation, simultaneous nitrogen and phosphorus removal performance. Chinese Chemical Letters, 2021, 32, 3402-3409.	4.8	24
67	Adsorption of Cr(VI) and Cu(II) from aqueous solutions by biochar derived from Chaenomeles sinensis seed. Water Science and Technology, 2019, 80, 2260-2272.	1.2	22
68	Weak magnetic field affected microbial communities and function in the A/O/A sequencing batch reactors for enhanced aerobic granulation. Separation and Purification Technology, 2021, 266, 118537.	3.9	21
69	Isolation and Characterization of <i>Pseudoxanthomonas</i> sp. Strain YP1 Capable of Denitrifying Phosphorus Removal (DPR). Geomicrobiology Journal, 2018, 35, 537-543.	1.0	17
70	Distinct responses of aerobic granular sludge sequencing batch reactors to nitrogen and phosphorus deficient conditions. Science of the Total Environment, 2022, 834, 155369.	3.9	17
71	Effects of important factors on hydrogen-based autotrophic denitrification in a bioreactor. Desalination and Water Treatment, 2016, 57, 3482-3488.	1.0	15
72	Impacts of poly-aluminum chloride addition on activated sludge and the treatment efficiency of SBR. Desalination and Water Treatment, 2015, 54, 2376-2381.	1.0	14

#	Article	IF	CITATIONS
73	Role of weak magnetic strength in the operation of aerobic granular reactor for wastewater treatment containing ammonia nitrogen concentration gradient. Bioresource Technology, 2021, 322, 124570.	4.8	14
74	Characterization and biodegradation potential of an aniline-degrading strain of <i>Pseudomonas</i> JA1 at low temperature. Desalination and Water Treatment, 2016, 57, 25011-25017.	1.0	13
75	Synthesis and characterization of a novel magnetic biochar from sewage sludge and its effectiveness in the removal of methyl orange from aqueous solution. Water Science and Technology, 2017, 75, 1539-1547.	1.2	13
76	Constructed wetland using corncob charcoal substrate: pollutants removal and intensification. Water Science and Technology, 2017, 76, 1300-1307.	1.2	13
77	Treatment of landfill leachate RO concentration by Iron–carbon micro–electrolysis (ICME) coupled with H ₂ O ₂ with emphasis on convex optimization method. Environmental Pollutants and Bioavailability, 2019, 31, 49-55.	1.3	13
78	La/Al engineered bentonite composite for efficient phosphate separation from aqueous media: Preparation optimization, adsorptive behavior and mechanism insight. Separation and Purification Technology, 2022, 290, 120894.	3.9	13
79	High nitrate removal by autohydrogenotrophic bacteria in a biofilm-electrode reactor. Desalination and Water Treatment, 0, , 1-9.	1.0	12
80	Nitrate removal by nitrate-dependent Fe(II) oxidation in an upflow denitrifying biofilm reactor. Water Science and Technology, 2015, 72, 377-383.	1.2	12
81	Autotrophic denitrification with anaerobic Fe2+ oxidation by a novel Pseudomonas sp. W1. Water Science and Technology, 2015, 71, 1081-1087.	1.2	12
82	Batch and fixed-bed column study for p-nitrophenol, methylene blue, and U(VI) removal by polyvinyl alcohol–graphene oxide macroporous hydrogel bead. Water Science and Technology, 2018, 77, 91-100.	1.2	12
83	Phenol biodegradation by isolated Citrobacter strain under hypersaline conditions. Water Science and Technology, 2018, 77, 504-510.	1.2	12
84	Optimization of operation conditions for preventing sludge bulking and enhancing the stability of aerobic granular sludge in sequencing batch reactors. Water Science and Technology, 2014, 70, 1519-1525.	1.2	11
85	Bio-augmentation as a tool for improving the modified sequencing batch biofilm reactor. Journal of Bioscience and Bioengineering, 2014, 117, 763-768.	1.1	11
86	Study on treating old landfill leachate by Ultrasound–Fenton oxidation combined with MAP chemical precipitation. Chemical Speciation and Bioavailability, 2015, 27, 175-182.	2.0	11
87	Reduction of highly concentrated phosphate from aqueous solution using pectin-nanoscale zerovalent iron (PNZVI). Water Science and Technology, 2016, 73, 2689-2696.	1.2	11
88	Feasibility and optimization of wastewater treatment by chemically enhanced primary treatment (CEPT): a case study of Huangshi. Chemical Speciation and Bioavailability, 2016, 28, 209-215.	2.0	11
89	Synchronous gelation and lanthanum introduction using bentonite/PVA/SA as the matrix for efficient phosphate removal from aqueous media: Adsorptive behavior and mechanism study. Journal of Cleaner Production, 2022, 339, 130763.	4.6	11
90	Ecotoxicological assessment of toxic elements contamination in mangrove ecosystem along the Red Sea coast, Egypt. Marine Pollution Bulletin, 2022, 176, 113446.	2.3	11

#	Article	IF	CITATIONS
91	Characteristics of nitrate removal in a bio-ceramsite reactor by aerobic denitrification. Environmental Technology (United Kingdom), 2015, 36, 1457-1463.	1.2	10
92	Effects of temperature on aerobic denitrification in a bio-ceramsite reactor. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2016, 38, 3236-3241.	1.2	10
93	Immobilization of halophilic yeast for effective removal of phenol in hypersaline conditions. Water Science and Technology, 2018, 77, 706-713.	1.2	10
94	Physically-crosslinked activated CaCO3/polyaniline-polypyrrole-modified GO/alginate hydrogel sorbent with highly efficient removal of copper(II) from aqueous solution. Chemical Engineering Journal, 2022, 431, 133375.	6.6	10
95	Effective biodegradation of nitrate, Cr(VI) and p-fluoronitrobenzene by a novel three dimensional bioelectrochemical system. Bioresource Technology, 2016, 203, 370-373.	4.8	9
96	Preparation of Cellulose/Chitin Blend Materials and Influence of Their Properties on Sorption of Heavy Metals. Sustainability, 2021, 13, 6460.	1.6	9
97	Domestic wastewater treatment in a novel sequencing batch biofilm filter. Applied Microbiology and Biotechnology, 2015, 99, 5731-5738.	1.7	8
98	Impact of microwave treatment on dewaterability of sludge during Fenton oxidation. Desalination and Water Treatment, 2016, 57, 14424-14432.	1.0	8
99	Nitrate removal by a combined bioelectrochemical and sulfur autotrophic denitrification (CBSAD) system at low temperatures. Desalination and Water Treatment, 2016, 57, 19411-19417.	1.0	8
100	Ochrobactrum anthropi used to control ammonium for nitrate removal by starch-stabilized nanoscale zero valent iron. Water Science and Technology, 2017, 76, 1827-1832.	1.2	8
101	Characteristics of Nitrate Reduction Using Fe (II) as Electron Donor in Activated Sludge. Geomicrobiology Journal, 2016, 33, 505-512.	1.0	7
102	Enhanced removal of hexavalent chromium from aqueous solution by functional polymer-wrapped gamma-alumina composite adsorbent. Environmental Technology and Innovation, 2021, 24, 101954.	3.0	7
103	Investigation of equilibrium and kinetics of Cr(VI) adsorption by dried Bacillus cereus using response surface methodology. Water Science and Technology, 2016, 73, 617-627.	1.2	6
104	Odor removal by powdered activated carbon (PAC) in low turbidity drinking water. Water Science and Technology: Water Supply, 2016, 16, 1017-1023.	1.0	6
105	Lotus seedpod as a low-cost biomass for potential methylene blue adsorption. Water Science and Technology, 2016, 74, 2560-2568.	1.2	5
106	Optimization of process variables by dried <i>Bacillus cereus</i> for biosorption of nickel(II) using response surface method. Desalination and Water Treatment, 2016, 57, 16096-16103.	1.0	5
107	Biosorption of copper and nickel ions using <i>Pseudomonas</i> sp. in single and binary metal systems. Desalination and Water Treatment, 2016, 57, 2799-2808.	1.0	4
108	Partial nitrification of non-ammonium-rich wastewater within biofilm filters under ambient temperature. Water Science and Technology, 2010, 62, 1518-1525.	1.2	3

#	Article	IF	CITATIONS
109	Comparison of Performance in a Bioelectrochemical System for Simultaneous Denitrification and Vanadate (V) Removal Using Hydrogen as the Sole Electron Donor. Geomicrobiology Journal, 2020, 37, 301-307.	1.0	3
110	Removal of color caused by dissolved organic matter from groundwater by electroflotation-filtration continuous flow reactor and optimization by response surface methodology. Desalination and Water Treatment, 2016, 57, 754-764.	1.0	1
111	Diversity and distribution of nirS-type denitrifiers as a biological indicator in response to environmental gradients in the eutrophied Haizhou Bay, China. Environmental Pollutants and Bioavailability, 2019, 31, 182-188.	1.3	1
112	Self-Aggregation and Denitrifying Strains Accelerate Granulation and Enhance Denitrification. Water (Switzerland), 2022, 14, 1482.	1.2	0